e
Bonn-Cologne Graduate Schoo

Bastian Kubis, Sebastian P. Schneider

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, GERMANY

1. Motivation

- Size of S-wave $\pi \pi$ scattering lengths is of central importance to the understanding of spontaneous symmetry breaking in QCD
- Prediction from 2-loop ChPT and Roy equation analysis [2]:

$$
a_{\pi \pi}^{0}-a_{\pi \pi}^{2}=0.265 \pm 0.004 .
$$

- Methods of experimental verification:
- reactions on nucleons, e.g. $\pi N \rightarrow \pi \pi N$
$-K^{+} \rightarrow \pi^{+} \pi^{-} e^{+} \nu_{e}$
- pionium lifetime
- cusp effect in $K^{+} \rightarrow \pi^{0} \pi^{0} \pi^{+}$and $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$
- Investigation of cusp effect in $K^{+} \rightarrow \pi^{0} \pi^{0} \pi^{+}$very precise method to extract S-wave $\pi \pi$ scattering lengths from experimental data [3-6]
- $\mathrm{BR}\left(K^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)>\mathrm{BR}\left(K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}\right)$ makes $K^{+} \rightarrow \pi^{0} \pi^{0} \pi^{+}$especially suited for a cusp analysis
- $\operatorname{BR}\left(\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}\right)=2 \mathrm{BR}\left(\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}\right) \Rightarrow \eta^{\prime} \rightarrow \eta \pi \pi$ viable candidate for study of the cusp effect
- Upcoming experiments on η^{\prime} decays: ELSA (Bonn), MAMI-C, WASA-at-COSY, KLOE-at-DA Φ NE, BES-III

2. Origin of the cusp effect

- Cusp in invariant mass spectrum of the $\pi^{0} \pi^{0}$ pair generated by

- Calculation in appropriate framework shows

- Loop function real below $\pi^{+} \pi^{-}$threshold \Rightarrow interference with (real) tree contribution \Rightarrow square-root behavior below threshold \Rightarrow cusp
- Size of the cusp effect depends on value of $a_{\pi \pi}^{0}-a_{\pi \pi}^{2}$

3. The decay amplitude

- Calculations performed in a modified non-relativistic effective field theory \Rightarrow manifestly covariant results, correct analytic structure in low-energy region
- $\mathcal{L}=\mathcal{L}_{\eta^{\prime}}+\mathcal{L}_{\pi \pi}+\mathcal{L}_{\pi \eta}$
$-\mathcal{L}_{\eta^{\prime}} \Rightarrow$ Dalitz-plot distribution of $\eta^{\prime} \rightarrow \eta \pi \pi$ at tree level
$-\mathcal{L}_{\pi \pi}$ and $\mathcal{L}_{\pi \eta} \Rightarrow$ effective range expansion of the scattering amplitudes
- Consistent power counting: correlated expansion in $a_{\pi \pi}, a_{\pi \eta}$ and ϵ
- three-momenta $\sim \mathcal{O}(\epsilon)$
- kinetic energies $T_{i}=p_{i}^{0}-M_{i} \sim \mathcal{O}\left(\epsilon^{2}\right)$
- masses $\sim \mathcal{O}(1)$
- two-particle rescattering $\sim \mathcal{O}(a \epsilon)$
- Analytic representation of the decay amplitude has been obtained up to and including terms of $\mathcal{O}\left(a_{\pi \pi}^{2} \epsilon^{6}, a_{\pi \pi} a_{\pi \eta} \epsilon^{2}, a_{\pi \eta}^{2} \epsilon^{2}\right)$, see [1]
- Following two-loop topologies have been taken into account:

- Radiative corrections performed up to $\mathcal{O}\left(a_{\pi \pi} \log (\epsilon)\right)$ in $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$ (virtual photon exchange) and up to $\mathcal{O}\left(e^{2} a^{0}\right)$ in $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$(Bremsstrahlung)

- Contributions from six-particle vertices and inelastic channels negligible

4. Prediction of the cusp

- Numerical input:
$-\pi \pi$ threshold parameters as predicted in [2]
$-\pi \eta$ threshold parameters from low-energy expansion of ChPT amplitude [7]
$-\eta^{\prime} \rightarrow \eta \pi \pi$ Dalitz plot parameters from VES collaboration [8]
- Remark: $\pi \eta$ threshold parameters very badly constrained by ChPT
\Rightarrow variation by as much as 150%
- $\pi \eta$ error bands can be significantly reduced by readjusting tree-level couplings so that the full amplitude squared yields the VES parameters
- Phase-space normalized decay rate $\frac{d \Gamma}{d s_{3}}$ of full and tree-level decay amplitude:

- Integrated event deficit $\approx 8 \% \Rightarrow$ comparable to 13% of $K^{+} \rightarrow \pi^{0} \pi^{0} \pi^{+}$ \Rightarrow pronounced cusp in $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$ decay spectrum
- Close-up on cusp region without (left) and with (right) radiative corrections:

$$
R\left(s_{3}\right)=\Pi^{-1}\left(s_{3}\right)\left[\frac{d \Gamma_{\text {full }}}{d s_{3}}-\frac{d \Gamma_{\text {tree }}}{d s_{3}}\right]-\Pi^{-1}\left(4 M_{\pi}^{2}\right)\left[\frac{d \Gamma_{\text {full }}}{d s_{3}}-\frac{d \Gamma_{\text {tree }}}{d s_{3}}\right]_{s_{3}=4 M_{\pi}^{2}} .
$$

- Two-loop cusp highly suppressed with respect to one-loop cusp \Rightarrow Threshold theorem:
$-\mathcal{O}\left(a^{2}\right)$ effects $\sim 0.5 \%$ relative to $\mathcal{O}(a)$
$-\mathcal{O}\left(a^{3}\right)$ effects reduce one loop cusp by about 0.5%.
- Cusp in $\eta^{\prime} \rightarrow \eta \pi \pi$ entirely dominated by $\mathcal{O}(a)$ rescattering effects

5. On the extraction of $\pi \eta$ parameters

- Only possibility: extraction from a cusp analysis in the $\pi \eta$ invariant mass spectrum s_{1} of the decay rate
- One-loop cusp does not lie in physical region of s_{1}
- $\mathcal{O}\left(a^{2}\right)$-effects exactly cancel at threshold:

- $\pi \eta$ threshold parameters cannot be determined in $\eta^{\prime} \rightarrow \eta \pi \pi$ decays

[^0]
[^0]: 6. References
 [1] B. Kubis and S. P. Schneider, Eur. Phys. J. C (2009) in print, arXiv:0904. 1320 [hep-ph] [2] G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B 603 (2001) 125
 [3] N. Cabibbo and G. Isidori, JHEP 0503 (2005) 021
 [4] G. Colangelo, J. Gasser, B. Kubis and A. Rusetsky, Phys. Lett. B 638 (2006) 187
 [5] M. Bissegger, A. Fuhrer, J. Gasser, B. Kubis and A. Rusetsky, Nucl. Phys. B 806 (2009) 178
 [6] J. R. Batley et al. [NA48/2 Collaboration], Phys. Lett. B 633 (2006) 173
 [7] V. Bernard, N. Kaiser and U.-G. Meißner, Phys. Rev. D 44 (1991) 3698
 [8] V. Dorofeev et al., Phys. Lett. B 651 (2007) 22
