Pole Dynamics in $K^{-} \pi^{+}$

P. C. Magalhães ${ }^{a}$ M. R. Robilotta ${ }^{b}$
${ }^{a}$ patricia@if.usp.br ${ }^{b}$ robilotta@if.usp.br
${ }^{1}$ Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil

Abstract

We present a simple chiral model for the $J=0, I=1 / 2$, elastic $K \pi$ amplitude which allows a transparent determination of its poles while preserving the essential physics. In the case of the K-matrix approximation, the model yields a quadratic equation in s. The solutions to this equation can then be well approximated by polynomials of masses and coupling constants. This analytic structure clarifies the reason of why, depending on the values of one of the coupling constants, one may have one or two physical poles. The model yields a pole, associated with the κ, at $\sqrt{s}=(0.75-i 0.24) \mathrm{GeV}$.

1 Introduction

The $K^{-} \pi^{+}$elastic scaterring amplitude for $(J, I)=(1 / 2,0)$ is discribed by the tree level diagram

Contact[1] and resonant[2] terms are derived from $S U(3) \times S U(3)$ chiral effective lagrangians

$$
\begin{equation*}
\mathcal{L}^{(2)}=\frac{F^{2}}{4}\left\langle\nabla_{\mu} U^{\dagger} \nabla^{\mu} U+\chi^{\dagger} U+\chi U^{\dagger}\right\rangle+c_{d}\left\langle S u_{\mu} u^{\mu}\right\rangle+c_{m}\left\langle S \chi_{+}\right\rangle \tag{1}
\end{equation*}
$$

- U is the pseudoscalar field,
- S represent scalar resonaces,
- c_{d} and c_{m} are scalar-pseudoscalar coupling constants

2 Theory

The $(J, I)=(0,1 / 2)$ amplitude is unitarized considering all $K \pi$ buble loop interactions[3]

and the amplitude is written as

$$
T_{1 / 2}(s)=\gamma^{2}(s) / D(s), \quad D(s)=\left[m_{R}^{2}-s+\gamma^{2}(s) \bar{R}_{1 / 2}(s)\right]-i\left[\gamma^{2}(s) \frac{\rho(s)}{16 \pi}\right],
$$

- s is the usual Mandelstam variable and $\rho(s)=\sqrt{1-2\left(M_{K}^{2}+M_{N}^{2}\right) / s+\left(M_{K}^{2}-M_{\pi}^{2}\right)^{2} / s^{2}}$;
- \bar{m}_{R} is the parameter present in the chiral lagrangian, called nominal resonance mass;
- $\bar{R}_{1 / 2}(s)$ is the function describing off-shell effects in the two-meson propagator, given by

$$
\begin{aligned}
\bar{R}_{1 / 2}(s) & =-\Re\left[L(s)-L\left(m_{R}^{2}\right)\right] / 16 \pi^{2} \\
\Re L(s) & \left.=\rho(s) \log [(1-\sigma) /(1+\sigma)]-2+\left[\left(M_{K}^{2}-M_{\pi}^{2}\right) / s\right] \log \left(M_{K} / M_{\pi}\right)\right] \\
\sigma & =\sqrt{\left|s-\left(M_{K}+M_{\pi}\right)^{2}\right| /\left|s-\left(M_{K}-M_{\pi}\right)^{2}\right|} ;
\end{aligned}
$$

- $\bar{R}_{1 / 2}\left(m_{R}^{2}\right)=0$ by construction and therefore the phase shift is $\pi / 2$ at $s=m_{R}^{2}$;
- $\gamma^{2}(s)$ is the function which incorporates chiral dynamics, given by

$$
\gamma^{2}(s)=\left\{\left(1 / F^{2}\right)\left[\left(1-3 \rho^{2}(s) / 8\right) s-\left(M_{\pi}^{2}+M_{K}^{2}\right)\right]\left(m_{R}^{2}-s\right)\right\}_{L}
$$

$$
+\left\{\left(3 / F^{4}\right)\left[c_{d}\left(s-M_{\pi}^{2}-M_{K}^{2}\right)+c_{m}\left(4 M_{K}^{2}+5 M_{\pi}^{2}\right) / 6\right]^{2}\right\}_{R} .
$$

(2)
(3)

5 Conclusion

We identify $\bullet \sqrt{s_{+}} \Longleftrightarrow K_{0}^{*}(1430)$

- if resonance R is absent $\begin{cases}\kappa & \longrightarrow \text { origin in contact interaction. } \\ K_{0}^{*}(1430) & \longrightarrow \text { absent. }\end{cases}$
- if $c_{d}=c_{m}=0 \begin{cases}\kappa & \longrightarrow \text { origin in contact interaction. } \\ K_{0}^{*}(1430) & \longrightarrow \text { bound state in the real axis at } s=m_{R}^{2}\end{cases}$
- if $c_{d} \neq 0 \begin{cases}\kappa & \longrightarrow \text { origin in contact interaction. } \\ K_{0}^{*}(1430) & \longrightarrow \text { mass and width increase monotonically whith } A .\end{cases}$
- if $c_{d} / F=\sqrt{5 / 24} \begin{cases}\kappa & \longrightarrow \text { origin in contact interaction. } \\ K_{0}^{*}(1430) & \longrightarrow \text { blows up; absent beyond this point }\end{cases}$

(5) Figure 1: Real (full) and imaginary (dashed) components of κ and $K_{0}^{*}(1430)$ functions. Green $\equiv e q(2) ; K$ and q are K-matrix and quadratic approximation.
- Coefficient A appears explicitly in approximate function and explains behavior of numerical solutions \Rightarrow Essential of poles is maintained in approximation;
- inclusion of the pion mass is not numerically important;
- off-shell effects in the two-meson propagator are numerically important.

Prediction:

$K_{0}^{*}(1430)$ pole at $[(1.414 \pm 0.006)-i(0.145 \pm 0.010)] \mathrm{GeV} \Longrightarrow \bullet m_{R}=1.1865 \pm 0.079 \mathrm{GeV}$ - $c_{d}=0.02786 \pm 0.00078 \mathrm{GeV}$

- κ pole at $(0.7505 \pm 0.0010)-i(0.2363 \pm 0.0023) \mathrm{GeV}$.

References

[1] G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B 603 (2001) 125
[2] A. Pich, E. Rafael, G Ecker, J. Gasser, Nucl. Phys. B 321 (1989) 77
[3] J.A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438

