# S=+1 Pentaquarks in QCD Sum Rules

Phys. Rev. D 79, 114011 (2009)

Philipp Gubler (Tokyo Tech)

6.7.2009

@ Bern University

Collaborators: M. Oka (Tokyo Tech)

T. Nishikawa (Juntendo University)

D. Jido (YITP)

T. Kojo (Brookhaven National Laboratory)

#### Contents

- The Pentaquark Θ<sup>+</sup> State
- The Method: QCD Sum Rules
  - A very brief introduction
- Results of our Calculation
  - $I,J^P = 0,3/2^{\pm}$
  - Other quantum numbers
- Conclusion and Outlook

# Pentaquark Θ<sup>+</sup>



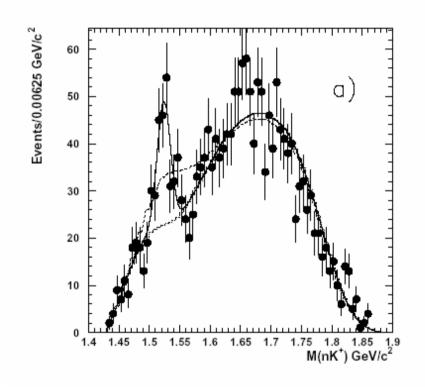
#### **Basic properties**

- B=1, S=1  $\rightarrow$  minimal quark content: 5 quarks  $(uudd\overline{s})$
- No Isospin-partners  $\Theta^0$ ,  $\Theta^{++} \rightarrow I=0$  (?)
- Narrow width: less than ~1 MeV
- Mass: ~1540 MeV

#### Why is it interesting?

- It is exotic.
- Why has it not been seen earlier?
- Why is it so narrow?
  - → New dynamics in QCD ?

The SPring-8 experiment has reconfirmed a peak, so the question of the existence of  $\Theta^+$  is not settled yet.



T. Nakano *et al.*Phys. Rev. C **79**, 025210 (2009).

Also, there are still many theoretical questions that remain to be answered.

(Quantum numbers, narrow width, etc.)

# QCD sum rules

In this method the properties of the two point correlation function is fully exploited:

$$\Pi(q) = i \int d^4x e^{iqx} \langle 0|T\{\chi(x)\overline{\chi}(0)\}|0\rangle$$
 
$$\rightarrow \Pi(q^2) = \frac{1}{\pi} \int_{s_{min}}^{\infty} ds \frac{\mathrm{Im}\Pi(s)}{s - q^2 - i\epsilon}$$
 is calculated "perturbatively" spectral function of the operator  $\chi$ 

Borel transformation → Introduction of an unphysical parameter, the Borel mass

### The concrete calculation (for I,J $^{P}$ =0,3/2 $^{\pm}$ )

We use the following interpolating fields:

$$\eta_{\mu}^{1}(x) = \epsilon_{cfg} [\epsilon_{abc} u_{a}^{T}(x) C \gamma_{5} d_{b}(x)] [\epsilon_{def} u_{d}^{T}(x) C \gamma_{\mu} \gamma_{5} d_{e}(x)] C \overline{s}_{g}^{T}(x),$$

$$\eta_{\mu}^{2}(x) = \epsilon_{cfg} [\epsilon_{abc} u_{a}^{T}(x) C d_{b}(x)] [\epsilon_{def} u_{d}^{T}(x) C \gamma_{\mu} \gamma_{5} d_{e}(x)] \gamma_{5} C \overline{s}_{g}^{T}(x)$$

$$\longrightarrow \eta_{\mu}(x) = \cos \theta \eta_{\mu}^{1}(x) + \sin \theta \eta_{\mu}^{2}(x)$$

Using these currents, the 2-point function is calculated:

#### Importance of the Borel window

#### 1. The OPE Convergence

$$\left| \frac{Dimension \ N \ terms}{OPE \ summed \ up \ to \ Dimension \ N} \right| \leq 0.1$$

#### 2. The Pole Contribution

$$\frac{\int_{0}^{s_{th}} ds e^{-\frac{s}{M^{2}}} Im \Pi^{OPE}(s)}{\int_{0}^{\infty} ds e^{-\frac{s}{M^{2}}} Im \Pi^{OPE}(s)} \ge 0.5$$

It is very important that these two conditions are satisfied simultaneously to obtain reliable results from QCDSR calculations!

#### How to obtain a high Pole Contribution (1)

We use an approach similar to the old idea of the Weinberg spectral function sum rule:

$$\langle V_{\mu}(x)\overline{V}_{\nu}(0)\rangle - \langle A_{\mu}(x)\overline{A}_{\nu}(0)\rangle \simeq 0$$
 $(x \to 0)$ 

#### → leading orders in the OPE expansion are suppressed!

T. Kojo, A. Hayashigaki, D.Jido, Phys. Rev. C 74, 045206 (2006)

In our case we calculate the difference of two (independent) correlators with different mixing angles to obtain a good suppression of the leading OPE orders:

$$\Pi_D(q^2, \phi) \equiv \Pi_i(q^2, \theta_1) - \Pi_i(q^2, \theta_2)$$
$$(\phi \equiv \theta_1 + \theta_2)$$

### How to obtain a high Pole Contribution (2)

The sum and the difference of the used interpolating fields belong to specific chiral multiplets:

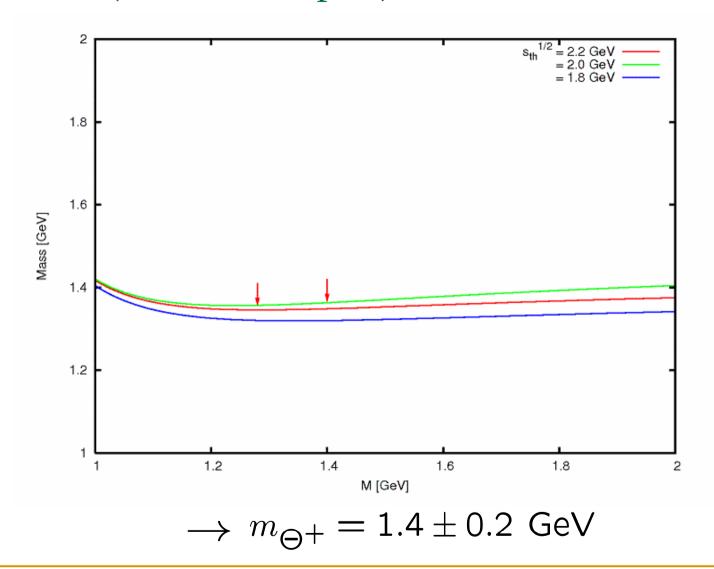
$$\xi_{1,\mu} \equiv \eta_{1,\mu} + \eta_{2,\mu} 
= 2(u_R^T C d_R)[(u_L^T C \gamma_{\mu} d_R) - (u_R^T C \gamma_{\mu} d_L)] C \overline{s}_R^T 
- 2(u_L^T C d_L)[(u_L^T C \gamma_{\mu} d_R) - (u_R^T C \gamma_{\mu} d_L)] C \overline{s}_L^T, 
\xi_{2,\mu} \equiv \eta_{1,\mu} - \eta_{2,\mu} 
= 2(u_R^T C d_R)[(u_L^T C \gamma_{\mu} d_R) - (u_R^T C \gamma_{\mu} d_L)] C \overline{s}_L^T 
- 2(u_L^T C d_L)[(u_L^T C \gamma_{\mu} d_R) - (u_R^T C \gamma_{\mu} d_L)] C \overline{s}_R^T.$$
(8,8)

$$\Pi_{D}(q^{2}, \phi) = \frac{1}{2} \left\{ \cos \phi \left[ \langle \xi_{1} \overline{\xi_{1}} \rangle - \langle \xi_{2} \overline{\xi_{2}} \rangle \right] - \sin \phi \left[ \langle \xi_{1} \overline{\xi_{2}} \rangle + \langle \xi_{2} \overline{\xi_{1}} \rangle \right] \right\}$$

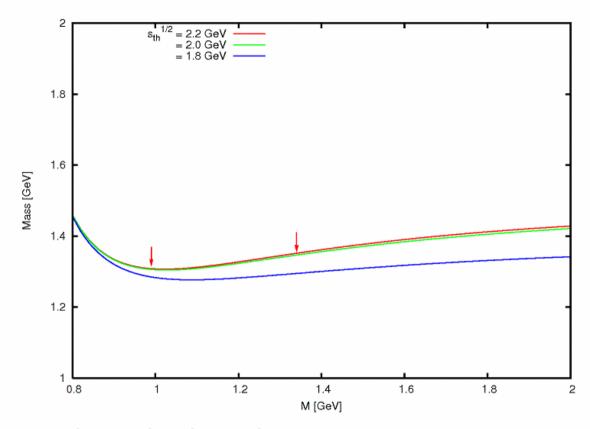
- 1) A sufficiently wide Borel window exists.
- 2) The calculated pentaquark mass should only weakly depend on the Borel mass M and the threshold parameter  $\mathbf{s}_{\text{th}}$ .

$$\rightarrow$$
  $\phi = 0.063$ 

### Results (Chiral even part)



### Results (Positive Parity)



In the negative parity channel no valid Borel window with a flat Borel mass curve is obtained.

$$\rightarrow IJ^P = 0\frac{3}{2}^+$$

### The other quantum numbers $(1,3/2^{\pm} 0,1/2^{\pm} 1,1/2^{\pm})$

The following interpolating fields are used:

$$\eta_{\mu}^{'1}(x) = \epsilon_{cfg} [\epsilon_{abc} u_a^T(x) C \gamma_5 d_b(x)] [\epsilon_{def} u_d^T(x) C \gamma_{\mu} d_e(x)] C \overline{s}_g^T(x),$$
  

$$\eta_{\mu}^{'2}(x) = \epsilon_{cfg} [\epsilon_{abc} u_a^T(x) C d_b(x)] [\epsilon_{def} u_d^T(x) C \gamma_{\mu} d_e(x)] \gamma_5 C \overline{s}_g^T(x).$$
(IJ<sup>\pi</sup> = 1,3/2<sup>\pi</sup>)

$$\eta^{1}(x) = \epsilon_{cfg} [\epsilon_{abc} u_{a}^{T}(x) C \gamma_{5} d_{b}(x)] [\epsilon_{def} u_{d}^{T}(x) C \gamma_{\mu} \gamma_{5} d_{e}(x)] \gamma^{\mu} \gamma_{5} C \overline{s}_{g}^{T}(x),$$

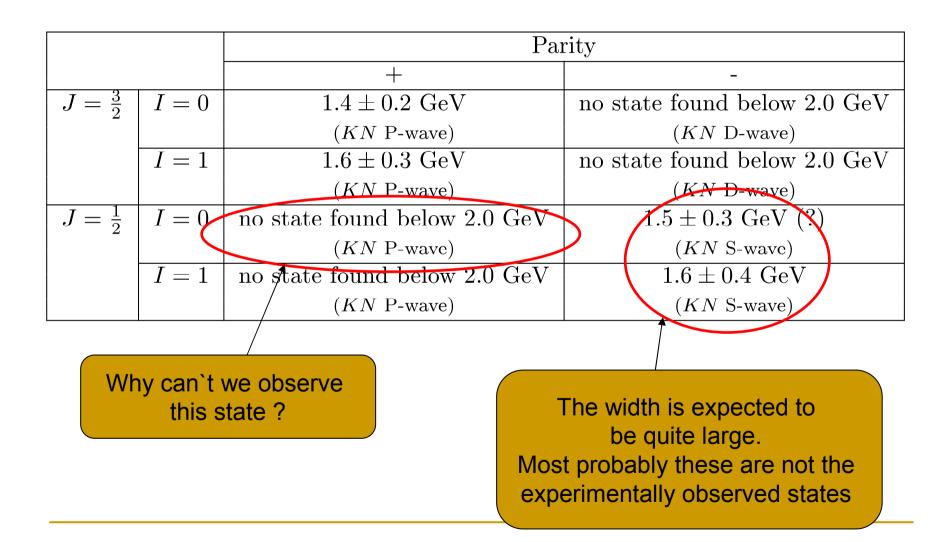
$$\eta^{2}(x) = \epsilon_{cfg} [\epsilon_{abc} u_{a}^{T}(x) C d_{b}(x)] [\epsilon_{def} u_{d}^{T}(x) C \gamma_{\mu} \gamma_{5} d_{e}(x)] \gamma^{\mu} C \overline{s}_{g}^{T}(x).$$
(IJ\*\* = 0,1/2\*)

$$\eta'^{1}(x) = \epsilon_{cfg} [\epsilon_{abc} u_a^T(x) C \gamma_5 d_b(x)] [\epsilon_{def} u_d^T(x) C \gamma_\mu d_e(x)] \gamma^\mu C \overline{s}_g^T(x),$$

$$\eta'^{2}(x) = \epsilon_{cfg} [\epsilon_{abc} u_a^T(x) C d_b(x)] [\epsilon_{def} u_d^T(x) C \gamma_\mu d_e(x)] \gamma^\mu \gamma_5 C \overline{s}_g^T(x).$$
(IJ<sup>\pi</sup> = 1,1/2\(\frac{\pi}{2}\))

The rest of the calculations follows the same lines as in the isosinglet case.

#### Summary of all obtained Results



# Conclusion and Outlook

- Our results suggest that the I,J<sup>π</sup>=0,3/2<sup>+</sup> seems to be the most probable candidate for the experimentally observed Θ<sup>+</sup>(1540).
- To further improve the reliability of our results a quantitative evaluation of the KN scattering states is necessary.
- As we have obtained a spin 3/2 state with positive parity, the problem of the narrow width will need further consideration.
  - Calculation of the width using the QCD sum rule approach would be interesting.

# Backup Slides

#### The theoretical (QCD) side

The operator product expansion (OPE) is used:

$$i \int d^4x e^{iqx} \langle 0|T\{\chi(x)\overline{\chi}(0)\}|0\rangle = C_I(q^2)I + \sum_n C_n(q^2) \langle 0|O_n|0\rangle$$
$$\langle 0|O_n|0\rangle = \langle 0|\overline{q}q|0\rangle,$$
$$\langle 0|G_{\mu\nu}^a G^{a\mu\nu}|0\rangle,$$
$$\langle 0|\overline{q}\sigma_{\mu\nu}\frac{\lambda^a}{2}G^{a\mu\nu}q|0\rangle,$$
$$\langle 0|\overline{q}q\overline{q}q|0\rangle,...$$

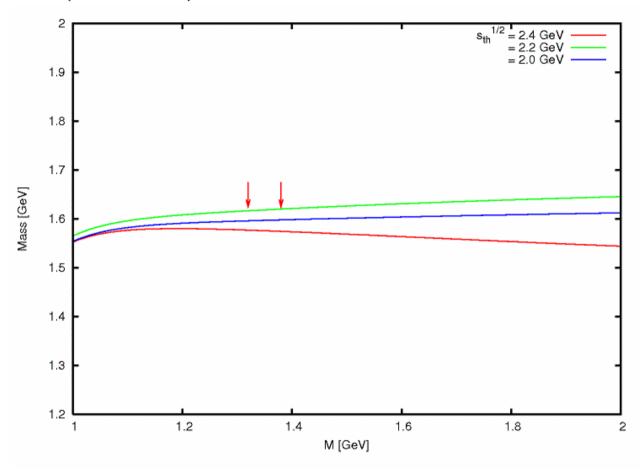
#### The phenomenological (hadronic) side

Sharp resonance + continuum is assumed:

$$\frac{1}{\pi}Im\Pi(s) = \lambda^2\delta(s-m^2) + \theta(s-s_{th})\frac{1}{\pi}Im\Pi^{OPE}(s)$$

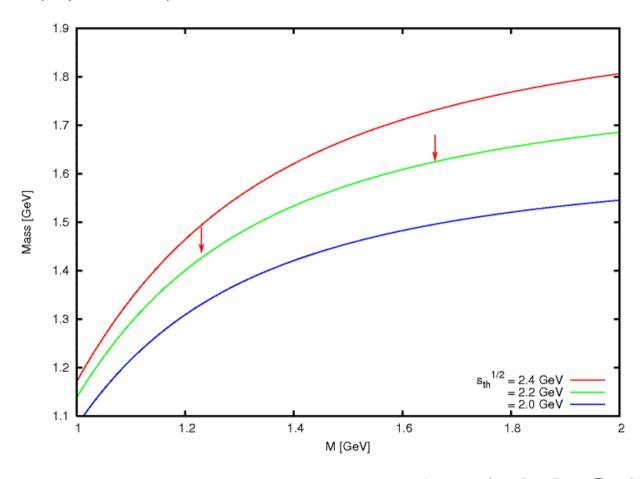
$$\begin{split} & \Pi(\frac{\phi}{2} + \frac{\pi}{4}) - \Pi(\frac{\phi}{2} - \frac{\pi}{4}) \\ & = + \frac{\langle \frac{\alpha_{+}}{4}G^{2} \rangle}{2^{16}3^{35}\pi^{6}} q^{6} \ln(-q^{2}) \cdot \cos \phi \\ & + \frac{\langle \overline{q}q \rangle^{2}}{2^{83}^{2}\pi^{4}} q^{4} \ln(-q^{2}) \cdot \sin \phi \\ & + \frac{m_{s} \langle \overline{s}g\sigma \cdot Gs \rangle}{2^{14}3 \cdot 5\pi^{6}} q^{4} \ln(-q^{2}) \cdot \cos \phi \\ & - \frac{\langle \overline{q}q \rangle \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{12}3^{3}\pi^{4}} q^{2} \ln(-q^{2}) \cdot (7\cos \phi + 172\sin \phi) \\ & + \frac{13m_{s} \langle \frac{\alpha_{+}}{4}G^{2} \rangle \langle \overline{s}g\sigma \cdot Gs \rangle}{2^{15}3^{3}\pi^{4}} \ln(-q^{2}) \cdot \cos \phi \\ & + \frac{m_{s} \langle \overline{q}q \rangle^{2} \langle \overline{s}s \rangle}{2^{13}3^{4}\pi^{4}} \ln(-q^{2}) \cdot (22\cos \phi + 735\sin \phi) \\ & + \frac{\langle \overline{q}g\sigma \cdot Gq \rangle^{2}}{2^{14}3^{4}\pi^{4}} \ln(-q^{2}) \cdot (2\cos \phi - 9\sin \phi) \\ & + \frac{m_{s} \langle \overline{q}q \rangle^{2} \langle \overline{s}g\sigma \cdot Gs \rangle}{2^{13}3^{4}\pi^{2}} \ln(-q^{2}) \cdot (2\cos \phi - 30\sin \phi) \\ & - \frac{5m_{s} \langle \overline{q}q \rangle \langle \overline{s}s \rangle \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{13}3^{4}\pi^{2}q^{2}} \cdot (65\cos \phi - 516\sin \phi) \\ & - \frac{\langle \overline{q}q \rangle^{4}}{3^{3}q^{2}} \cdot \sin \phi \\ & + \frac{m_{s} \langle \overline{q}q \rangle \langle \overline{q}g\sigma \cdot Gq \rangle \langle \overline{s}g\sigma \cdot Gs \rangle}{2^{10}3^{4}\pi^{2}q^{4}} \cdot (17\cos \phi - 120\sin \phi) \\ & - \frac{11m_{s} \langle \overline{s}s \rangle \langle \overline{q}g\sigma \cdot Gq \rangle^{2}}{2^{10}3^{3}\pi^{2}q^{4}} \cdot \sin \phi \\ & - \frac{7m_{s} \langle \overline{q}q \rangle^{2} \langle \overline{s}s \rangle \langle \frac{\alpha_{+}}{\pi}G^{2} \rangle}{2^{13}3^{4}q^{4}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma \cdot Gq \rangle}{2^{23}4q^{4}}} \cdot \sin \phi \\ & - \frac{97 \langle \overline{q}q \rangle^{2} \langle \overline{q}g\sigma$$

### Results $(1,3/2^{\pm})$



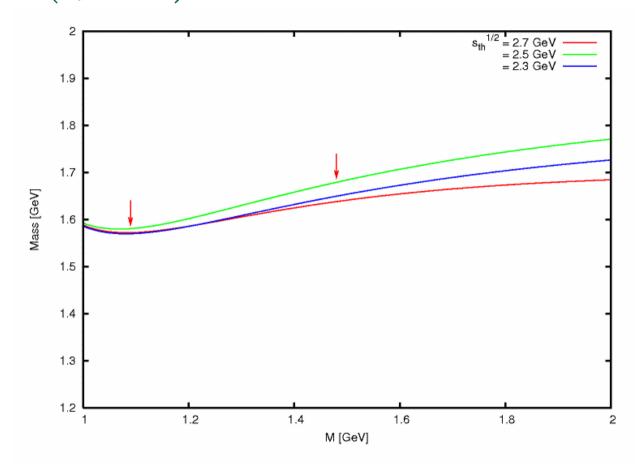
 $\rightarrow m = 1.6 \pm 0.3 \text{ GeV}$  Parity projection  $\rightarrow IJ^P = 1\frac{3}{2}^+$ 

### Results $(0,1/2^{\pm})$



$$\rightarrow m = 1.5 \pm 0.3 \; {\rm GeV}$$
 Parity projection 
$$\rightarrow IJ^P = 0\frac{1}{2}^-$$

## Results $(1,1/2^{\pm})$



$$\rightarrow \quad m = 1.6 \pm 0.4 \text{ GeV}$$
 Parity projection  $\rightarrow \quad IJ^P = \mathbf{1}\frac{1}{2}^-$