Study of the $\eta \rightarrow 3 \pi^{0}$ decay with the Crystal Ball at MAMI-C

Sergey Prakhov, UCLA

Chiral Dynamics 2009
Bern, July 6-10, 2009

Talk outline

- Physical motivation for study of $\eta \rightarrow 3 \pi^{0}$
- Current status on the experimental and theoretical study of the $\eta \rightarrow 3 \pi^{0}$ decay
- Experimental setup: CB+TAPS at MAMI
- Analysis of the data from MAMI-C
- Result for the $\eta \rightarrow 3 \pi^{0}$ slope parameter from the MAMI-C data
- A cusp-like structure in the $\pi^{0} \pi^{0}$ invariant mass from $\eta \rightarrow 3 \pi^{0}$ decays
- Final remarks

Physical motivation for study of $\eta \rightarrow 3 \pi^{0}$

- $\eta \rightarrow 3 \pi^{0}$ violates isospin symmetry \Rightarrow unique possibilities to study symmetries and symmetry-breaking characteristics of strong interactions
- $A\left(\eta \rightarrow 3 \pi^{0}\right) \sim\left(m_{d}-m_{u}\right)(1+\alpha z)$, $\Gamma\left(\eta \rightarrow 3 \pi^{0}\right) \sim\left(m_{d}-m_{u}\right)^{2}(1+2 \alpha z+\ldots)$, $\mathrm{z}=6 /\left(\mathrm{m}_{\eta}-3 \mathrm{~m}_{\pi 0}\right)^{2} \sum_{1}\left(\mathrm{E}_{\pi 0}^{2}-\mathrm{m}_{\eta} / 3\right)^{2}=\rho^{2 /} \rho_{\text {max }}^{2}$; precise measurements of $\Gamma\left(\eta \rightarrow 3 \pi^{0}\right)$ and α are important tests of $\chi \mathrm{PTh}$ calculations
- Search for a cusp in $\mathrm{m}\left(\pi^{0} \pi^{0}\right)$ in the vicinity of the $\pi^{+} \pi^{-}$ threshold in the light of the recent $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ results providing a test of the χ PTh prediction for the S-wave scattering length combination a0-a2

Variable $\mathrm{z}=\rho^{2} / \rho_{\text {max }}^{2}$ reflects the density distribution along the radius of the $\eta \rightarrow 3 \pi^{0}$ Dalitz plot

Experimental results and theoretical calculations for α

- Experimental results for α :

GAMS2000 (1984): $\quad-0.022 \pm 0.023$
CBarrel at LEAR (1998): $-0.052 \pm 0.017 \pm 0.010$
CBall at AGS (2001): $\quad-0.031 \pm 0.004$
KLOE (prelim.2005): $\quad-0.013 \pm 0.004 \pm 0.005$
CELSIUS-WASA (2007): $-0.026 \pm 0.010 \pm 0.010$
KLOE (prelim.2007): $-0.027 \pm 0.004 \pm 0.005$
CBall at MAMI-B (2009): $-0.032 \pm 0.002 \pm 0.002$
CBall at MAMI-C (2009): -0.032 ± 0.003

- Calculations for α :
J.Kambor et al. (1996): $\quad-0.007$ or -0.0014
B.Borasoy et al. (2005): $\quad-0.031 \pm 0.003$
J.Bijnens et al. (2007): $\quad 0.013 \pm 0.032$
- CBall at MAMI-C (2009): very small cusp in m $\left(\pi^{0} \pi^{0}\right)$

Mainz Microtron

Crystal Ball: 672 NaI(Tl) crystals (31-cm long or 15.7 rad. lengths) cover 93% of 4π, 50 -cm inner \varnothing

$\sigma E / E=0.021 /(E[\mathrm{GeV}])^{0.36}$
$\sigma \theta=2^{\circ}-3^{\circ}$
$\sigma \phi=\sigma \theta / \sin \theta$

CB@MAMI setup: Crystal Ball + TAPS(510 or $384 \mathrm{BaF}_{2}$ crystals: 6 -cm inner \varnothing, $25-\mathrm{cm}$ long or 12 rad. lengths)

$$
\begin{aligned}
& \sigma E / E=0.018+0.008 /(\mathrm{E}[\mathrm{GeV}])^{0.5} \\
& \sigma \theta \approx 1^{\circ}\left(\mathrm{L}_{\text {TAPS }}=175 \text { or } 147 \mathrm{~cm}\right) \\
& \sigma \phi \approx 50^{\circ} / \mathrm{R}[\mathrm{~cm}]
\end{aligned}
$$

Beam-energy range for $\gamma \mathrm{p} \rightarrow \eta \mathrm{p}$ with tagged γ 's:
MAMI-B: $\mathrm{E}_{\gamma}=707-820 \mathrm{MeV} / \mathrm{c}, \Delta \mathrm{E}_{\gamma} \approx 1 \mathrm{MeV}$
MAMI-C: $\mathrm{E}_{\gamma}=707-1402 \mathrm{MeV} / \mathrm{c}, \Delta \mathrm{E}_{\gamma} \approx 2 \mathrm{MeV}$

Production of $\eta \rightarrow 3 \pi^{0}$ events at MAMI-C

Selection of $\eta \rightarrow 3 \pi^{0}$ events

- reaction $\gamma \mathrm{p} \rightarrow \eta \mathrm{p} \rightarrow 3 \pi^{0} \mathrm{p}$ at MAMI-C: $\mathrm{E}_{\gamma}=707-1402 \mathrm{MeV}$ is tagged, CB+TAPS $\rightarrow 30 \%$ average acceptance, 80% of the protons are detected
- kinematic fit of $\gamma p \rightarrow \eta p \rightarrow 3 \pi^{0} p \rightarrow 6 \gamma p$ at the 2% CL is used to identify $\eta \rightarrow 3 \pi^{0}$ events
- Background contributions: random coincidences in the tagger $\sim 8 \%$, $\gamma \mathrm{p} \rightarrow 3 \pi^{0} \mathrm{p}$ from 0.4% to 4%, empty target from 1% to 4%

Agreement between the data and MC for $\eta \rightarrow 3 \pi^{0}$ events; Resolution in the invariant mass (6 MeV) and in parameter z

Kin.Fit: $\gamma \mathbf{p} \rightarrow \eta p \rightarrow 3 \pi^{0} \mathbf{p} \rightarrow 6 \gamma p$

Production angular distributions for $\gamma \mathrm{p} \rightarrow \eta \mathrm{p}$

$\mathrm{d} \sigma / \mathrm{d} \Omega(\gamma \mathrm{p} \rightarrow \eta \mathrm{p}), \mathrm{W}=1517.8-1520.3 \mathrm{MeV}$

$\mathrm{d} \sigma / \mathrm{d} \Omega(\gamma \mathrm{p} \rightarrow \eta \mathrm{p}), \mathrm{W}=1689.7-1699.6 \mathrm{MeV}$

The published result (Phys.Rev.C79:035204,2009) is based on $3.1 \mathrm{M} \eta \rightarrow 3 \pi^{0}$ events of $26.6 \mathrm{M} \eta$'s produced (3 runs: 04.07-07.07)

Full statistics collected at MAMI-C in 2007 is $3.9 \mathrm{M} \eta \rightarrow 3 \pi^{0}$ events

Stability of results for the $\eta \rightarrow 3 \pi^{0}$ slope parameter depending on experimental conditions and selection cuts $\rightarrow \alpha=-0.032 \pm 0.003$

Test	Cuts	Statistics	α	χ^{2} / ndf
1	$\mathrm{CL}=2 \%$	3.06 M	-0.0322 ± 0.0012	$31.4 / 18$
2	$\mathrm{CL}=5 \%$	2.78 M	-0.0326 ± 0.0013	$32.2 / 18$
3	$\mathrm{CL}=10 \%$	2.50 M	-0.0329 ± 0.0014	$30.0 / 18$
4	$\mathrm{CL}=20 \%$	2.11 M	-0.0326 ± 0.0015	$25.9 / 18$
5	$\mathrm{CL}=2 \%, \mathrm{E} \gamma<1.1 \mathrm{GeV}$	2.76 M	-0.0320 ± 0.0013	$26.9 / 18$
6	$\mathrm{CL}=2 \%, \mathrm{E} \gamma<0.9 \mathrm{GeV}$	2.18 M	-0.0321 ± 0.0015	$20.2 / 18$
7	$\mathrm{CL}=2 \%, \mathrm{Ecb}<0.42 \mathrm{GeV}$	2.83 M	-0.0316 ± 0.0013	$29.1 / 18$
8	$\mathrm{CL}=2 \%, \mathrm{Ecb}<0.47 \mathrm{GeV}$	2.60 M	-0.0319 ± 0.0013	$30.7 / 18$
9	$\mathrm{CL}=2 \%, \cos \theta^{7}<0$.	1.73 M	-0.0334 ± 0.0017	$23.5 / 18$
10	$\mathrm{CL}=2 \%, \cos \theta_{\eta}>0$.	1.32 M	-0.0312 ± 0.0019	$14.5 / 18$
11	$\mathrm{CL}=2 \%, 7 \mathrm{cl}$	2.39 M	-0.0323 ± 0.0014	$26.4 / 18$
12	$\mathrm{CL}=2 \%, 6 \mathrm{cl}$	0.663 M	-0.0292 ± 0.0027	$22.0 / 18$

The $3 \pi^{0}$ invariant mass depending on the beam-energy range for $\gamma p \rightarrow 3 \pi^{0} p$ events

Looking for a cusp-like structure in $\mathrm{m}\left(\pi^{0} \pi^{0}\right)$

Bissegger et al. Phys.Lett.B 659 (2008) 576 :

$$
\mathrm{A}\left(\eta \rightarrow 3 \pi^{0}\right)=\mathrm{u}_{0}+\mathrm{u}_{1} \mathrm{z} ; \quad \mathrm{A}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=\mathrm{v}_{0}+\mathrm{v}_{1} \mathrm{y}+\mathrm{v}_{2} \mathrm{y}^{2}+\mathrm{v}_{3} \mathrm{x}^{2} ;
$$

tried $\mathrm{v}_{0} / \mathrm{u}_{0}=-1 / 3(+1 / 3)$ and $\mathrm{v}_{0}=1, \mathrm{v}_{1}=-0.52 * 1.25, \mathrm{v}_{2}=-0.063$, $v_{3}=0.025, \alpha=-0.038$ from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ of KLOE (arXiv:0808.2642)

Dependence of the z distribution on the cusp structure: $\mathrm{v}_{0} / \mathrm{u}_{0}=-1 / 3$ (left), $\mathrm{v}_{0} / \mathrm{u}_{0}=+1 / 3$ (right), $\alpha=0$ (top), $\alpha=-0.038$ (bottom)

Experimental Dalitz plot for $\eta \rightarrow 3 \pi^{0}$

Final remarks

- "Standard" analysis of $\eta \rightarrow 3 \pi^{0}$ decays from the CB data at MAMI-C yields $\alpha=-0.032 \pm 0.003$, confirming the PDG value, $\alpha=-0.031 \pm 0.004$.
- A cusp-like structure in $m\left(\pi^{0} \pi^{0}\right)$ from $\eta \rightarrow 3 \pi^{0}$ decays is seen on the level $\leq 1 \%$, with the opposite sign from the expected. More statistics is needed for a better understanding.
- Neglecting the $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ contribution in the $\eta \rightarrow 3 \pi^{0}$ analysis can results in a biased value for α.
- Joint analysis of the $\eta \rightarrow 3 \pi^{0}$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz plots seems to be needed for more reliable results on their parameters.

