Study of the $\eta \rightarrow 3\pi^0$ decay with the Crystal Ball at MAMI-C

Sergey Prakhov, UCLA Chiral Dynamics 2009 Bern, July 6-10, 2009

Talk outline

- Physical motivation for study of $\eta \rightarrow 3\pi^0$
- Current status on the experimental and theoretical study of the $\eta \rightarrow 3\pi^0$ decay
- Experimental setup: CB+TAPS at MAMI
- Analysis of the data from MAMI-C
- Result for the $\eta{\rightarrow}3\pi^0$ slope parameter from the MAMI-C data
- A cusp-like structure in the $\pi^0 \pi^0$ invariant mass from $\eta \rightarrow 3\pi^0$ decays
- Final remarks

Physical motivation for study of $\eta \rightarrow 3\pi^0$

• $\eta \rightarrow 3\pi^0$ violates isospin symmetry \Rightarrow unique possibilities to study symmetries and symmetry-breaking characteristics of strong interactions

•
$$A(\eta \rightarrow 3\pi^0) \sim (m_d - m_u)(1 + \alpha z),$$

 $\Gamma(\eta \rightarrow 3\pi^0) \sim (m_d - m_u)^2(1 + 2\alpha z + ...),$
 $z = 6/(m_\eta - 3m_{\pi 0})^2 \Sigma_\iota (E^\iota_{\pi 0} - m_\eta/3)^2 = \rho^2/\rho^2_{max};$
precise measurements of $\Gamma(\eta \rightarrow 3\pi^0)$ and α are important tests of χ PTh calculations

• Search for a cusp in $m(\pi^0\pi^0)$ in the vicinity of the $\pi^+\pi^$ threshold in the light of the recent $K^+ \rightarrow \pi^+\pi^0\pi^0$ results providing a test of the χ PTh prediction for the S-wave scattering length combination a0-a2

Variable $z=\rho^2/\rho_{max}^2$ reflects the density distribution along the radius of the $\eta \rightarrow 3\pi^0$ Dalitz plot

Experimental results and theoretical calculations for $\boldsymbol{\alpha}$

- Experimental results for α : GAMS2000 (1984): -0.022±0.023 CBarrel at LEAR (1998): -0.052±0.017±0.010 CBall at AGS (2001): -0.031±0.004 KLOE (prelim.2005): -0.013±0.004±0.005 CELSIUS-WASA (2007): -0.026±0.010±0.010 KLOE (prelim.2007): -0.027±0.004±0.005 CBall at MAMI-B (2009): -0.032±0.002±0.002 CBall at MAMI-C (2009): -0.032±0.003
- Calculations for α : J.Kambor et al. (1996): -0.007 or -0.0014 B.Borasoy et al. (2005): -0.031 \pm 0.003 J.Bijnens et al. (2007): 0.013 \pm 0.032
- CBall at MAMI-C (2009): very small cusp in $m(\pi^0\pi^0)$

Mainz Microtron

Crystal Ball: 672 NaI(Tl) crystals (31-cm long or 15.7 rad. lengths) cover 93% of 4π , 50-cm inner Ø

 $\sigma E / E = 0.021 / (E [GeV])^{0.36}$ $\sigma \theta = 2^{\circ} - 3^{\circ}$ $\sigma \phi = \sigma \theta / \sin \theta$ CB@MAMI setup: Crystal Ball +TAPS(510 or 384 BaF_2 crystals: 6-cm inner Ø, 25-cm long or 12 rad. lengths)

 $\sigma E / E = 0.018 + 0.008 / (E [GeV])^{0.5}$ $\sigma \theta \approx 1^{\circ} (L_{TAPS} = 175 \text{ or } 147 \text{ cm})$ $\sigma \phi \approx 50^{\circ} / R[cm]$

Beam-energy range for $\gamma p \rightarrow \eta p$ with tagged γ 's: MAMI-B: $E_{\gamma} = 707-820$ MeV/c, $\Delta E_{\gamma} \approx 1$ MeV MAMI-C: $E_{\gamma} = 707-1402$ MeV/c, $\Delta E_{\gamma} \approx 2$ MeV

Production of $\eta \rightarrow 3\pi^0$ events at MAMI-C

Selection of $\eta \rightarrow 3\pi^0$ events

- reaction $\gamma p \rightarrow \eta p \rightarrow 3\pi^0 p$ at MAMI-C: $E_{\gamma} = 707-1402$ MeV is tagged, CB+TAPS $\rightarrow 30\%$ average acceptance, 80% of the protons are detected
- kinematic fit of $\gamma p \rightarrow \eta p \rightarrow 3\pi^0 p \rightarrow 6\gamma p$ at the 2%CL is used to identify $\eta \rightarrow 3\pi^0$ events
- Background contributions: random coincidences in the tagger ~8%, $\gamma p \rightarrow 3\pi^0 p$ from 0.4% to 4%, empty target from 1% to 4%

Agreement between the data and MC for $\eta \rightarrow 3\pi^0$ events; Resolution in the invariant mass (6 MeV) and in parameter z

Production angular distributions for $\gamma p \rightarrow \eta p$

The published result (Phys.Rev.C79:035204,2009) is based on 3.1M $\eta \rightarrow 3\pi^0$ events of 26.6M η 's produced (3 runs: 04.07–07.07)

Full statistics collected at MAMI-C in 2007 is $3.9M \eta \rightarrow 3\pi^0$ events

Stability of results for the $\eta \rightarrow 3\pi^0$ slope parameter depending on experimental conditions and selection cuts $\rightarrow \alpha = -0.032 \pm 0.003$

Test	Cuts	Statistics	α	χ^2 /ndf
1	CL=2%	3.06M	-0.0322±0.0012	31.4/18
2	CL=5%	2.78M	-0.0326±0.0013	32.2/18
3	CL=10%	2.50M	-0.0329±0.0014	30.0/18
4	CL=20%	2.11M	-0.0326±0.0015	25.9/18
5	CL=2%, Εγ <1.1GeV	2.76M	-0.0320±0.0013	26.9/18
6	CL=2%, E 7 <0.9GeV	2.18M	-0.0321±0.0015	20.2/18
7	CL=2%, Ecb<0.42GeV	2.83M	-0.0316±0.0013	29.1/18
8	CL=2%, Ecb<0.47GeV	2.60M	-0.0319±0.0013	30.7/18
9	CL=2%, $\cos \theta_{\eta} < 0$.	1.73M	-0.0334±0.0017	23.5/18
10	CL=2%, $\cos \theta_{\eta}$ >0.	1.32M	-0.0312±0.0019	14.5/18
11	CL=2%, 7cl	2.39M	-0.0323±0.0014	26.4/18
12	CL=2%, 6cl	0.663M	-0.0292±0.0027	22.0/18

The $3\pi^0$ invariant mass depending on the beam-energy range for $\gamma p \rightarrow 3\pi^0 p$ events

Looking for a cusp-like structure in $m(\pi^0\pi^0)$

Bissegger et al. Phys.Lett.B 659 (2008) 576 : $A(\eta \rightarrow 3\pi^{0}) = u_{0} + u_{1}z$; $A(\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}) = v_{0} + v_{1}y + v_{2}y^{2} + v_{3}x^{2}$; tried $v_{0}/u_{0} = -1/3(+1/3)$ and $v_{0} = 1$, $v_{1} = -0.52*1.25$, $v_{2} = -0.063$, $v_{3} = 0.025$, $\alpha = -0.038$ from $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ of KLOE (arXiv:0808.2642)

Dependence of the z distribution on the cusp structure: $v_0/u_0 = -1/3$ (left), $v_0/u_0 = +1/3$ (right), $\alpha = 0$ (top), $\alpha = -0.038$ (bottom)

Experimental Dalitz plot for $\eta \rightarrow 3\pi^0$

Final remarks

- "Standard" analysis of $\eta \rightarrow 3\pi^0$ decays from the CB data at MAMI-C yields $\alpha = -0.032 \pm 0.003$, confirming the PDG value, $\alpha = -0.031 \pm 0.004$.
- A cusp-like structure in $m(\pi^0\pi^0)$ from $\eta \rightarrow 3\pi^0$ decays is seen on the level $\leq 1\%$, with the opposite sign from the expected. More statistics is needed for a better understanding.
- Neglecting the $\eta \rightarrow \pi^+ \pi^- \pi^0$ contribution in the $\eta \rightarrow 3\pi^0$ analysis can results in a biased value for α .
- Joint analysis of the $\eta \rightarrow 3\pi^0$ and $\eta \rightarrow \pi^+\pi^-\pi^0$ Dalitz plots seems to be needed for more reliable results on their parameters.