Update on Rare Pion and Muon Decay Measurements the PIBETA and PEN Experiments

Dinko Počanić

University of Virginia

6th International Workshop: Chiral Dynamics, Theory and Experiment University of Bern, Bern, Switzerland 6–10 July 2009

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 1 / 30

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Outline

Overview of the PIBETA/PEN programs The apparatus and method

Pion Beta Decay: $\pi^+ \rightarrow \pi^0 e^+ \nu$

Radiative pion decay: $\pi \rightarrow e \nu \gamma$

Radiative muon decay: $\mu \rightarrow e \nu \bar{\nu} \gamma$

The PEN Experiment: $\pi \rightarrow e\nu$

Summary: present status, plans

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 2 / 30

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Overview of the PIBETA/PEN programs

The PIBETA-PEN Program of Measurements

1st phase: The PIBETA expt.: Runs: 1999–2001; 2004

► $\pi^+ \rightarrow \pi^0 e^+ \nu_e$

o SM checks related to CKM unitarity

• $\pi^+ \rightarrow e^+ \nu_e \gamma (\text{or } e^+ e^-)$

• F_A/F_V , π polarizability (χ PT calibration) • tensor coupling besides V - A (?)

• $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma (\text{or } e^+ e^-)$

 \circ departures from V-A in $\mathcal{L}_{\rm weak}$

2nd phase: The PEN expt. Since 2006 - ongoing

► $\pi^+ \rightarrow e^+ \nu_e$

 $\circ \mathbf{e}$ - μ universality

o pseudoscalar coupling besides $\mathbf{V} - \mathbf{A}$

o ν sector anomalies, Majoron searches, $\mathbf{m_{h+}}$, PS I-q's, V I-q's, . . .

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 3 / 30

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Known and Measured Pion and Muon Decays

$$\begin{array}{cccc} \mbox{Decay} & BR \\ \pi^+ \to \ \mu^+ \nu & 0.9998770\,(4) & (\pi_{\mu 2}) \\ \mu^+ \nu \gamma & 2.00\,(25) \times 10^{-4} & (\pi_{\mu 2}\gamma) \\ e^+ \nu & 1.230\,(4) \times 10^{-4} & (\pi_{e2}) & \checkmark \\ e^+ \nu \gamma & 1.61\,(23) \times 10^{-7} & (\pi_{e2}\gamma) & \checkmark \\ \pi^0 e^+ \nu & 1.025\,(34) \times 10^{-8} & (\pi_{e3}, \pi_{\beta}) & \checkmark \\ e^+ \nu e^+ e^- & 3.2\,(5) \times 10^{-9} & (\pi_{e2ee}) \end{array}$$

$$\begin{array}{c} \pi^0 \to \ \gamma \gamma & 0.98798\,(32) \\ e^+ e^- \gamma & 1.198\,(32) \times 10^{-2} \\ e^+ e^- e^+ e^- & 3.14\,(30) \times 10^{-5} \\ e^+ e^- & 6.2\,(5) \times 10^{-8} \end{array} \qquad (Dalitz) \\ \mu^+ \to \ e^+ \nu \bar{\nu} & \sim 1.0 \\ e^+ \nu \bar{\nu} \bar{\nu} + e^- & 3.4\,(4) \times 10^{-5} \end{array}$$

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 4 / 30

The apparatus and method

The PIBETA/PEN Apparatus

stopped π^+ beam active target counter 240-det. Csl calorimeter central tracking digitized waveforms stable temp./humidity

Pion Beta Decay

Pion Beta Decay: $\pi^+ ightarrow \pi^0 e^+ u$

1999–2001 data set

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 6 / 30

Quark-Lepton (Cabibbo) Universality

The basic weak-interaction V-A form persists in hadronic weak decays

 $\mathcal{M} \propto \langle \mathbf{p} | \mathbf{h}^{\alpha} | \mathbf{n} \rangle \rightarrow \bar{\mathbf{u}}_{\mathbf{n}} \gamma^{\alpha} (\mathbf{G}_{\mathbf{V}} - \mathbf{G}_{\mathbf{A}} \gamma_5) \mathbf{u}_{\mathbf{n}}$ with $\mathbf{G}_{\mathbf{V},\mathbf{A}} \simeq 1$.

Departure from $G_V = 1$ (CVC) comes from weak quark (Cabibbo) mixing: $\mathbf{G}_{\mathbf{V}} = \mathbf{G}_{\mu} \cos \theta_{\mathbf{C}} (= \mathbf{G}_{\mu} \mathbf{V}_{ud}) \quad \cos \theta_{\mathbf{C}} \simeq 0.97$

CKM unitarity cond.: $\Delta V^2 = 1 - (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2) \stackrel{?}{=} 0.$ stringently tests the SM.

Prior to 2004 there was a **persistent** $\sim 2.5\sigma$ shortfall in ΔV^2 . motivating many experiments to determine CKM m.e.'s, esp. V_{ud} and V_{us} .

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 7 / 30

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

PIBETA Result for π_{β} Decay [PRL 93, 181803 (2004)]

 $B_{\pi\beta}^{\exp} = [1.040 \pm 0.004 \,(\text{stat}) \pm 0.004 \,(\text{syst})] \times 10^{-8}$,

 $B_{\pi\beta}^{\exp} = [1.036 \pm 0.004 \,(\text{stat}) \pm 0.004 \,(\text{syst}) \pm 0.003 \,(\pi_{\text{e2}})] \times 10^{-8} \,,$

McFarlane et al. [PRD 1985]: $B = (1.026 \pm 0.039) \times 10^{-8}$

```
SM Prediction (PDG, 2006):

B = 1.038 - 1.041 \times 10^{-8} (90% C.L.)

(1.005 - 1.007 \times 10^{-8} excl. rad. corr.)
```

PDG 2008: $V_{ud} = 0.9742(3)$ PIBETA current: $V_{ud} = 0.9748(25)$ or $V_{ud} = 0.9728(30)$.

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 9 / 30

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 10 / 30

Radiative pion decay $\pi \rightarrow e \nu \gamma$

Radiative pion decay: $\pi ightarrow { m e} u \gamma$

1999-2001 & 2004 data sets

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 11 / 30

Standard **IB** and **V** – **A** terms

A tensor interaction, too?

D. Počanić (UVa)

The $\pi \rightarrow e\nu\gamma$ amplitude and FF's The IB amplitude (QED):

$$M_{IB} = -i rac{e G_F V_{ud}}{\sqrt{2}} f_\pi m_e \epsilon^{\mu *} ar{e} \left(rac{k_\mu}{kq} - rac{p_\mu}{pq} + rac{\sigma_{\mu
u} q^
u}{2kq}
ight) imes (1 - \gamma_5) \,
u \, .$$

The structure-dependent amplitude:

$$M_{SD} = \frac{eG_F V_{ud}}{m_{\pi}\sqrt{2}} \epsilon^{\nu*} \bar{e} \gamma^{\mu} (1-\gamma_5) \nu \times [F_V \epsilon_{\mu\nu\sigma\tau} p^{\sigma} q^{\tau} + iF_A (g_{\mu\nu} pq - p_{\nu} q_{\mu})] .$$

The SM branching ratio ($\gamma \equiv F_A/F_V$; $x = 2E_\gamma/m_\pi$; $y = 2E_e/m_\pi$),

$$\frac{d\Gamma_{\pi e 2\gamma}}{dx \, dy} = \frac{\alpha}{2\pi} \Gamma_{\pi e 2} \Big\{ IB(x, y) + \left(\frac{F_V m_\pi^2}{2f_\pi m_e}\right)^2 \\ \times \left[(1+\gamma)^2 \operatorname{SD}^+(x, y) + (1-\gamma)^2 \operatorname{SD}^-(x, y) \right] \\ + \left(\frac{F_V m_\pi}{f_\pi}\right) \left[(1+\gamma) S_{\mathrm{int}}^+(x, y) + (1-\gamma) S_{\mathrm{int}}^-(x, y) \right] \Big\}.$$

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 13 / 30

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Available data on Pion Form Factors

$$|\mathsf{F}_{\mathsf{V}}| \stackrel{\scriptscriptstyle \mathsf{cvc}}{=} rac{1}{lpha} \sqrt{rac{2\hbar}{\pi au_{\pi^0} \mathbf{m}_\pi}} = 0.0259(9) \; .$$

$\textbf{F_A}\times \textbf{10}^4$	reference	
$106 \pm 60 \\ 135 \pm 16 \\ 60 \pm 30 \\ 110 \pm 30$	Bolotov et al. (1990) Bay et al. (1986) Piilonen et al. (1986) Stetz et al. (1979)	
$\textbf{116} \pm \textbf{16}$	world average (PDG 2004)	

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 14 / 30

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Available data on Pion Form Factors

$$|\mathsf{F}_{\mathsf{V}}| \stackrel{\scriptscriptstyle \mathsf{cvc}}{=} rac{1}{lpha} \sqrt{rac{2\hbar}{\pi au_{\pi^0} \mathbf{m}_{\pi}}} = 0.0259(9) \; .$$

$\textbf{F}_{\textbf{A}}\times 10^{4}$	reference	note
$\begin{array}{c} 106 \pm 60 \\ 135 \pm 16 \\ 60 \pm 30 \\ 110 \pm 30 \end{array}$	Bolotov et al. (1990) Bay et al. (1986) Piilonen et al. (1986) Stetz et al. (1979)	$(F_T=-56\pm17)$
$\textbf{116} \pm \textbf{16}$	world average (PDG 2004))

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 14 / 30

3

<ロ> (日) (日) (日) (日) (日)

Available data on Pion Form Factors

$$|\mathsf{F}_{\mathsf{V}}| \stackrel{\scriptscriptstyle \mathsf{cvc}}{=} rac{1}{lpha} \sqrt{rac{2\hbar}{\pi au_{\pi^0} \mathbf{m}_{\pi}}} = 0.0259(9) \; .$$

${\sf F}_{\sf A} imes 10^4$	reference	note
$106 \pm 60 \\ 135 \pm 16 \\ 60 \pm 30 \\ 110 \pm 30$	Bolotov et al. (1990) Bay et al. (1986) Piilonen et al. (1986) Stetz et al. (1970)	$(F_T = -56 \pm 17)$
$\frac{110 \pm 30}{116 \pm 16}$	world average (PDG 2004	.)

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 14 / 30

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Results, V – A fit [1999-01 data, PRL 93, 181804 (2004)]

Best-fit $\pi \rightarrow e\nu\gamma$ branching ratios obtained with: $F_V = 0.0259$ (fixed) and $F_A = 0.0115(4)$ (fit) $\chi^2/d.o.f. = 25.4$.

Radiative corrections are included in the calculations.

$\mathbf{E}_{\mathbf{e}^{+}}^{\min}$ (MeV)	$\frac{{\sf E}_{\gamma}^{\min}}{({\sf MeV})}$	$ heta_{{ m e}\gamma}^{\min}$	B _{exp} (×10 ⁻⁸)	B _{the} (×10 ⁻⁸)	no. of events
50	50		2.71(5)	2.583(1)	30.6 k
10	50	40°	<mark>11.6</mark> (3)	14.34(1)	5.2 k
50	10	40°	39.1(13)	37.83(1)	5.7 k

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 15 / 30

イロト 不得下 イヨト イヨト

 $\pi^+ \rightarrow e^+ \nu \gamma \text{ (S/B) } 2004$

Region I: $E_{\gamma}, E_{e^+} > 51.7 \, \text{MeV}$

Region II: $E_{\gamma} > 55.6 \,\mathrm{MeV}$ $20 < E_{e^+} < 51.7 \,\mathrm{MeV}$ $(\theta_{e\gamma} > 40^{\circ})$

Region III: $20 < E_{\gamma} < 51.7 \,\mathrm{MeV}$ $E_{e^+} > 55.6 \, {\rm MeV}$ $(\theta_{e\gamma} > 40^{\circ})$

D. Počanić (UVa)

PIBETA and PEN Experiments

Radiative pion decay Pion form factors

Radiative pion decay Pion form factors

Experimental History of Pion F_A and F_V

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 20 / 30

Summary of Pion Form Factor Results

 $F_V = 0.0258 \pm 0.0017$ (14×) $F_A = 0.0119 \pm 0.0001^{exp}_{(E_c^{CVC})}$ (16×) $a = 0.10 \pm 0.06$ (∞) $-5.2 imes 10^{-4} < F_T < 4.0 imes 10^{-4}$ 90 % C.L. Derived pion polarizability and π^0 lifetime: $L_{9}^{r} + L_{10}^{r} = 0.00145(1)_{exp}(5)_{Fv} / 0.0014_{-2}^{+3}$ (3-param. fit) $lpha_{
m E} = -eta_{
m M} =$ (2.783 \pm 0.023 $_{
m exp}$) imes 10⁻⁴ fm³ $au_{\pi^0} = (8.5 \pm 1.1) imes 10^{-17}$ s PDG: 8.4(6)

Also:

$$\mathsf{B}_{\pi_{\mathrm{e}2\gamma}}(\mathsf{E}_{\gamma}>10\,\mathrm{MeV}, heta_{\mathrm{e}\gamma}>40^{\circ})=73.86(54) imes10^{-8}~(17 imes)$$

D. Počanić (UVa)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Radiative muon decay $\mu \rightarrow e \nu \bar{\nu} \gamma$

Radiative muon decay:

$\mu ightarrow { m e} u ar{ u} \gamma$

2004 data set

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 22 / 30

Michel Parameters of Radiative Muon Decay: $\mu \rightarrow e \nu \bar{\nu} \gamma$

$$\frac{d^3B(x,y,\theta)}{dx\,dy\,2\pi\,d(\cos\theta)} = f_1(x,y,\theta) + \overline{\eta}f_2(x,y,\theta) + (1-\frac{4}{3}\rho)f_3(x,y,\theta)$$

$$\begin{split} \rho &= \frac{3}{4} - \frac{3}{4} \Big[|g_{LR}^{V}|^2 + |g_{RL}^{V}|^2 + 2|g_{LR}^{T}|^2 + 2|g_{RL}^{T}|^2 \\ &+ \Re (g_{RL}^{S} g_{RL}^{T*} + g_{LR}^{S} g_{LR}^{T*}) \Big] \quad \stackrel{\text{SM}}{=} \quad \frac{3}{4} \,, \end{split}$$

$$\begin{split} \bar{\eta} &= \left(|g_{RL}^{V}|^{2} + |g_{LR}^{V}|^{2} \right) + \frac{1}{8} \left(|g_{LR}^{S} + 2g_{LR}^{T}|^{2} + |g_{RL}^{S} + 2g_{RL}^{T}|^{2} \right) \\ &+ 2 \left(|g_{LR}^{T}|^{2} + |g_{RL}^{T}|^{2} \right) \quad \stackrel{\text{SM}}{\equiv} \quad \mathbf{0} \,. \end{split}$$

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 23 / 30

RMD analysis: Fit of $\bar{\eta}$ and ρ [B. VanDevender's thesis]

data set	$ar\eta$	ρ
nine-piece target	-0.066 ± 0.070	0.750 ± 0.010
	-0.065 ± 0.065	0.75 (fixed)
one-piece target	-0.115 ± 0.085	$\textbf{0.751} \pm \textbf{0.011}$
	-0.111 ± 0.077	0.75 (fixed)

Combined: $\bar{\eta} = -0.084 \pm 0.050 (\text{stat.}) \pm 0.034 (\text{syst.})$

$$\Rightarrow \overline{\eta} \leq 0.033 \; (68 \,\% \text{ c.l.}) \; \text{or} \; \overline{\eta} \leq 0.060 \; (90 \,\% \text{ c.l.})$$

 \Rightarrow new world average: $\overline{\eta} \leq 0.028$ (68 % c.l.)

2.5×

Currently being updated by new high quality PEN data: ($2 \times$ statistics).

D. Počanić (UVa)

イロト 不得下 イヨト イヨト

The PEN Experiment: $\pi \rightarrow e\nu$

Ongoing since 2007

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 27 / 30

$\pi ightarrow \mathbf{e} u$ Decay: SM Calculations; Measurements

Modern theoretical calculations: $B_{calc} = \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))_{calc}} =$

 $\begin{cases} 1.2352 \, (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2354 \, (2) \times 10^{-4} & \text{Decker and Finkemeier, [Phys. Lett. B$ **387** $(1996) 391]} \\ 1.2352 \, (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{exp} = (1.230 \pm 0.004) \times 10^{-4}$$

N.B.:

PEN goal:
$$\frac{\delta B}{B}\simeq 5 imes 10^{-4}$$
 .

D. Počanić (UVa)

PIBETA and PEN Experiments

イロト 不得下 イヨト イヨト 二日

$\pi ightarrow {f e} u$ Decay: SM Calculations; Measurements

Modern theoretical calculations: $B_{calc} = \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))_{calc}} =$

 $\begin{cases} 1.2352 \, (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2354 \, (2) \times 10^{-4} & \text{Decker and Finkemeier, [Phys. Lett. B$ **387** $(1996) 391]} \\ 1.2352 \, (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{exp} = (1.230 \pm 0.004) \times 10^{-4}$$

N.B.:

PEN goal:
$$\frac{\delta B}{B}\simeq 5 imes 10^{-4}$$
 .

D. Počanić (UVa)

PIBETA and PEN Experiments

イロト 不得 トイヨト イヨト 二日

$\pi ightarrow {f e} u$ Decay: SM Calculations; Measurements

Modern theoretical calculations: $B_{calc} = \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))_{calc}} =$

 $\begin{cases} 1.2352 \, (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2354 \, (2) \times 10^{-4} & \text{Decker and Finkemeier, [Phys. Lett. B$ **387** $(1996) 391]} \\ 1.2352 \, (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{exp} = (1.230 \pm 0.004) \times 10^{-4}$$

N.B.:

PEN goal:
$$\frac{\delta B}{B} \simeq 5 \times 10^{-4}$$
.

D. Počanić (UVa)

PIBETA and PEN Experiments

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Summary: present status, plans

PEN Experiment: Status and Plans

- ► Approved in 2006; two development runs, in 2007 and 2008,
- ► Total pions stopped in 2007 and 2008 runs: $> 8 \times 10^{10}$. > 4.7 × 10⁶ π_{e2} 's recorded $\Rightarrow (\delta B/B)_{stat} < 5 \times 10^{-4}$.
- Detailed data analysis under way in preparation for a 2009 run, planned to complete the required event statistics.
- ► Improved beam tracking with a miniTPC ready for implementation.

Current and former PIBETA and PEN collaborators

L. P. Alonzi^a, K. Assamagan^a, V. A. Baranov^b, W. Bertl^c, C. Broennimann^c,
S. Bruch^a, M. Bychkov^a, Yu.M. Bystritsky^b, M. Daum^c, T. Flügel^c, E. Frlež^a,
R. Frosch^c, K. Keeter^a, V.A. Kalinnikov^b, N.V. Khomutov^b, J. Koglin^a,
A.S. Korenchenko^b, S.M. Korenchenko^b, M. Korolija^d, T. Kozlowski^e,
N.P. Kravchuk^b, N.A. Kuchinsky^b, D. Lawrence^h, W. Li^a, J. S. McCarthy^a,
R. C. Minehart^a, D. Mzhavia^{b, f}, A. Palladino^{a, c}, D. Počanić^{a*}, B. Ritchie^h,
S. Ritt^{a, c}, P. Robmann^g, O.A. Rondon-Aramayo^a, A.M. Rozhdestvensky^b,
T. Sakhelashvili^f, S.N. Shkarovskiy^b, P. L. Slocum^a, L. C. Smith^a, N. Soić^d,
U. Straumann^g, I. Supek^d, P. Truöl^g, Z. Tsamalaidze^f, A. van der Schaaf^{g*},
E.P. Velicheva^b, V.P. Volnykh^b, Y. Wang^a, C. Wigger^c, H.-P. Wirtz^c, K. Ziock^a.

^a Univ. of Virginia, USA ^cPSI, Switzerland ^eSwierk, Poland ^gUniv. Zürich, Switzerland ^b JINR, Dubna, Russia ^d IRB, Zagreb, Croatia ^f IHEP, Tbilisi, Georgia ^h Arizona State Univ., USA

Home pages: http://pibeta.phys.virginia.edu http://pen.phys.virginia.edu

D. Počanić (UVa)

PIBETA and PEN Experiments

CD 2009, 6 July '09 30 / 30