Kaon physics: recent experimental results

Mario Antonelli

LNF-INFN

Sixth International Workshop on Chiral Dynamics

Tuesday, 07 July 2009 28, Bern, Switzerland

Outline

CP violation

CPT invariance & tests on QM helicity suppressed modes radiative decays rare semileptonic decays

CP violation

ϵ'/ϵ : Indirect vs. Direct QP

To distinguish between direct and indirect CP violation, compare $K_{IS} \rightarrow \pi^+ \pi^-$, $\pi^0 \pi^0$:

$$6 \operatorname{Re}(\varepsilon' / \varepsilon) \approx \frac{\Gamma\left(\mathsf{K}_{L} \to \pi^{+}\pi^{-}\right) / \Gamma\left(\mathsf{K}_{s} \to \pi^{+}\pi^{-}\right)}{\Gamma\left(\mathsf{K}_{L} \to \pi^{0}\pi^{0}\right) / \Gamma\left(\mathsf{K}_{s} \to \pi^{0}\pi^{0}\pi^{0}\right)} - 1$$

Measurements of Re(ϵ'/ϵ) @2008

Final result by NA48

partial data sample for KTeV

Final KTeV result

Mass vs. Energy

x2 statistics

Improved syts.(¹/₂) due to calorimeter energy scale knowledge:

- Calorimeter calibrated with momentum-analyzed electrons from $K \rightarrow \pi ev$
- Final energy scale adjustment based on $K^0 \rightarrow \pi^0 \pi^0$ at regenerator edge

KTeV Result: Re(ϵ'/ϵ) = [19.2 ± 1.1(stat) ± 1.8(syst)] x 10⁻⁴

World average: Re(ϵ'/ϵ) = (16.8 ± 1.4) × 10⁻⁴ (confidence level = 13%)

(KTeV 2003: Re(ϵ'/ϵ) = [20.7 ± 1.5(stat) ± 2.4 (syst)] x10⁻⁴)

CP violation in K vs B decays

Recent lattice results for B_{κ} and previously neglected contributions lead to 15% smaller ϵ_{κ} , in conflict with sin2 β

Assuming SM, use sin2 β , $|V_{cb}|$, λ , $\Delta M_s/\Delta M_d$, ξ , B_{κ} =0.720(39) RBC-UKQCD

 $|\epsilon_{\kappa}|^{\text{SM}} = (1.78 \pm 0.25) 10^{-3}$ vs $|\epsilon_{\kappa}|^{\text{exp}} = (2.221 \pm 0.006) 10^{-3}$

'04 value $|\varepsilon_{\kappa}|^{exp} = (2.284 \pm 0.014) 10^{-3}$ replaced with new measurements

1.8-2.1σ depending on assigned errors Buras, Guadagnoli, Lunghi Soni Easy to find new physics explanations, even in CMFV

better agreement using $|V_{cx}|$ from exclusive:

 $\label{eq:smaller} \begin{array}{l} -d|\epsilon_{\kappa}|^{\text{SM}} \mbox{ dominated by } d|V_{cb}| \mbox{ (inclusive-exclusive ~ 2.5\sigma)} \\ -inclusive-exclusive ~ 2-1.5\sigma \mbox{ for } V_{ub} \mbox{ determination} \\ \mbox{ RBC-UKQCD } B_{\kappa} \mbox{ determination confirmed by Aubin et al '09 and ETMC} \end{array}$

Differences between FlaviaNet and PDG are minor

Since PDG '04:

- Proper radiative corrections, especially for Ke3
- Exclusion of old measurements

from K _L BRs:		PDG '04	This fit	
	$\mathbf{K}_{\mu3}/\mathbf{K}_{e3}$	0.701(9)	0.6666(29)	ok with lepton universality
	η ₊₋ ×10³	2.284(14)	2.223(6)	$>3\sigma$ difference

CPT invariance

Time evolution of the neutral kaons

$$i \frac{d}{dt} \begin{bmatrix} K^0 \\ \overline{K}^0 \end{bmatrix} = \begin{bmatrix} M - i \Gamma/2 \end{bmatrix} \begin{bmatrix} K^0 \\ \overline{K}^0 \end{bmatrix} \qquad \begin{array}{c} \text{CPT invariance} \\ M_{11} = M_{22} \ \Gamma_{11} = \Gamma_{22} \end{array}$$

Diagonalization

$$K_{\rm S,L} = N \left[\left[1 + \varepsilon_{\rm S,I} \right] \, \mathrm{K}^0 \pm \left[1 - \varepsilon_{\rm S,I} \right] \, \overline{\mathrm{K}}^0 \right] \qquad \mathbf{\varepsilon}_{\rm S,L} = \mathbf{\varepsilon} \pm \mathbf{\delta}$$

$$\delta = \frac{i (m_{\rm K} - m_{\rm \overline{K}}) + (\Gamma_{\rm K} - \Gamma_{\rm \overline{K}})/2}{\Gamma_{\rm S} - \Gamma_{\rm L}} \cos \phi_{\rm SW} e^{i\phi_{\rm SW}}$$

$$\oint \Delta \Gamma = 0 \qquad \qquad \phi_{SW} = \tan^{-1} \frac{2(m_L - m_S)}{\Gamma_S - \Gamma_L} = 43.5^{\circ}$$

$$\left|\frac{\mathbf{m}_{\mathrm{K}} - \mathbf{m}_{\overline{\mathrm{K}}}}{\mathbf{m}_{\mathrm{K}}}\right| \cong 3 \times 10^{-14} \left|\mathbf{Im\delta}\right|$$

Unitarity and Bell Steinberger relation

Even if CPT is violated, we can assume that **unitarity** is preserved (**= conservation of probability**)

$$\begin{split} &\Gamma_{11} = \sum_{f} A^*(K^0 \!\rightarrow\! f) \, A(K^0 \!\rightarrow\! f) \\ &\Gamma_{12} = \sum_{f} A^*(\overline{K^0} \!\rightarrow\! f) \, A(K^0 \!\rightarrow\! f) \end{split}$$

Expressing the decay amplitudes in the $K_{\rm S}$ $K_{\rm L}$ basis and using the definitions of ϵ and δ

$$\begin{pmatrix} \frac{\Gamma_{s} + \Gamma_{L}}{\Gamma_{s} - \Gamma_{L}} + i \tan \phi_{sw} \end{pmatrix} \begin{pmatrix} \frac{\text{Re } \varepsilon}{1 + |\varepsilon|^{2}} - i \operatorname{Im} \delta \end{pmatrix} = \frac{1}{\Gamma_{s} - \Gamma_{L}} \sum_{f} A^{*}(K_{s} \rightarrow f) A(K_{L} \rightarrow f)$$

Exp. inputs **Two outputs** Exp. Inputs: only $\pi\pi$, 3π and π/v give appreciable contribution, $\geq 10^{-7}$

Im $\delta \neq 0$ could only be due to: violation of CPT, violation of unitarity, new exotic invisible final states

New measurement of $\phi_{_{+-}}$ and $\Delta \phi$ from KTeV

KTeV 2008: ϕ_{+-} = (43.8 ± 0.6)° (KTeV 2003: ϕ_{+-} = (44.1 ± 1.4)°) better treatment of reg. transmission, screening

KTeV 2008: $\Delta \phi = (0.30 \pm 0.35)^{\circ}$ (KTeV 2003: $\Delta \phi = (0.39 \pm 0.50)^{\circ}$)

> Improvement: neutral energy scale

	CPLEAR99	KLOE06	PDG08	Present result	
Analysis strategy	fit to BSR and π <i>l</i> ν asymm.	Evaluation of α 's			
······					
Im δ (×10 ⁵)	2.4 ± 5.0	0.4 ± 2.1	-0.6 ± 1.9	-0.1 ± 1.4	
σ(Im δ)	4.5 ⊕ 2.1	1.8 ⊕ 1.2	1.8 ⊕ 0.6	1.3 ⊕ 0.6	
	3π ππ πh	ππ π/ν	ππ π/ν	ππ π <i>Ι</i> ν	
	368 V				
Comments	π/ν vs time	new l	ew K _L →ππ, K _s →3 π^0 , $A_{\rm S}$ and $A_{\rm L}$		
			better treatment of CPLEAR data	new ф _{лл}	
$\mathbf{Re} \ \epsilon \ (\times 10^5)$	164.9 ± 2.5	159.6 ± 1.3	161.2 ± 0.6	161.2 ± 0.6	

CPT test: m(K)-m(K)

$$\delta = \frac{1}{2} \frac{M_{11} - M_{22} - i(\Gamma_{11} - \Gamma_{22})/2}{m_{\rm s} - m_{\rm L} - i(\Gamma_{\rm s} - \Gamma_{\rm L})/2} \implies \begin{cases} \Delta M \propto -\sin\phi_{\rm SW} \operatorname{Re} \delta + \cos\phi_{\rm SW} \operatorname{Im} \delta \\ \Delta \Gamma \propto \cos\phi_{\rm SW} \operatorname{Re} \delta + \sin\phi_{\rm SW} \operatorname{Im} \delta \end{cases}$$

 $Im\delta = (-0.1 \pm 1.4) \times 10^{-5}$ from BSR; $Re\delta = (2.5 \pm 2.3) \times 10^{-4}$ essentially from CPLEAR

Assuming CPT violation *only* in the mass matrix:

	CPLEAR99	KLOE06	PDG08	Present result
ΔM at $\Delta \Gamma=0$	3.3 ± 7.0	0.5 ± 3.0	-0.9 ± 2.6	-0.1 ± 2.0
$(10^{-19}{ m GeV})$				

Test of QM

Neutral kaons at a φ -factory

Production of the vector meson ϕ in e⁺e⁻ annihilations:

• $e^+e^- \rightarrow \phi$ $\sigma_{\phi} \sim 3 \ \mu b$ $W = m_{\phi} = 1019.4 \ MeV$ • $BR(\phi \rightarrow K^0 \overline{K}^0) \sim 34\%$ • $\sim 10^6$ neutral kaon pairs per pb⁻¹ produced in an antisymmetric quantum state with $J^{PC} = 1^-$: $\mathbf{p}_{\mathbf{K}} = 110 \ \mathrm{MeV/c}$ $\lambda_{\mathbf{S}} = 6 \ \mathrm{mm}$ $\lambda_{\mathbf{L}} = 3.5 \ \mathrm{m}$ e^+ $\psi = \frac{e^+}{K_{\mathrm{L},\mathrm{S}}}$ $|i\rangle = \frac{1}{\sqrt{2}} \left[\left[K^0(\vec{p}) \right] \left| \overline{K}^0(-\vec{p}) \right\rangle - \left| \overline{K}^0(\vec{p}) \right] \left| K_0(-\vec{p}) \right\rangle \right]$ $|i\rangle = \frac{1}{\sqrt{2}} \left[\left[K_s(\vec{p}) \right] \left| K_L(-\vec{p}) \right\rangle - \left| K_L(\vec{p}) \right| \left| K_s(-\vec{p}) \right\rangle \right]$ $N = \sqrt{\left[1 + \left| \varepsilon_s \right|^2 \right] \left(1 - \varepsilon_s \varepsilon_L \right)} \approx 1$

K_{S,L}

The detection of a kaon at large (small) times tags a $K_S(K_L)$ \Rightarrow possibility to select a pure K_S beam (**unique** at a ϕ -factory, not possible at fixed target experiments)

$\varphi \rightarrow K_s K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: test of QM coherence

- Analysed data: L=1.5 fb⁻¹ (2004-05 data)
- Fit including Δt resolution and efficiency effects + regeneration
- Γ_S , Γ_L , Δm fixed from PDG

KLOE FINAL:

$$\zeta_{0\overline{0}} = (1.4 \pm 9.5_{\text{STAT}} \pm 3.8_{\text{SYST}}) \times 10^{-7}$$

as CP viol. $O(|\eta_{+-}|^2) \sim 10^{-6}$ => high sensitivity to $\zeta_{0\overline{0}}$

- Improvement x 2 wrt published KLOE measurement (PLB 642(2006) 315)

- From CPLEAR data $(p\overline{p})_{REST} \rightarrow K^0 \overline{K}^0$ Bertlmann et al. obtain (PR D60 (1999) 114032): $\zeta_{0\overline{0}} = 0.4 \pm 0.7$

 $\varphi \rightarrow K_{S}K_{I} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}: CPTV by QG$

Study of time evolution of **single kaons** decaying in π + π - and semileptonic final state

CPLEAR PLB 364, 239 (1999)

$$\alpha = (-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$$

$$\beta = (2.5 \pm 2.3) \times 10^{-19} \text{ GeV}$$

$$\gamma = (1.1 \pm 2.5) \times 10^{-21} \text{ GeV}$$

In the complete positivity hypothesis $\alpha = \gamma$, $\beta = 0$ => only one independent parameter: γ

The fit with $I(\pi^+\pi^-, \pi^+\pi^-; \Delta t, \gamma)$ gives: **KLOE FINAL** L=1.5 fb⁻¹

$$\gamma = (0.7 \pm 1.2_{STAT} \pm 0.3_{SYST}) \times 10^{-21} \text{ GeV}$$

- Improvement x 2 wrt published KLOE

Complete positivity guarantees the positivity of the eigenvalues of density matrices describing states of correlated kaons.

$\varphi \rightarrow K_{S}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}: CPTV \text{ in K-K states}$

In presence of decoherence and CPT violation induced by quantum gravity (CPT operator "ill-defined") the definition of the particle-antiparticle states could be modified. This in turn could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) to the kaon state [Bernabeu, et al. PRL 92 (2004) 131601, NPB744 (2006) 180]:

$$|i\rangle \propto \left(K^{0}\overline{K}^{0} - K^{0}\overline{K}^{0}\right) + \bigotimes K^{0}\overline{K}^{0} + K^{0}\overline{K}^{0}\right)$$

| ω | could be at most:
$$|\omega|^{2} = O\left(\frac{E^{2}/M_{PLANCK}}{\Delta\Gamma}\right) \approx 10^{-5} \Rightarrow |\omega| \sim 10^{-3}$$

Fit of $I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t,\omega)$:
KLOE FINAL:
$$L=1.5 \text{ fb}^{-1}$$

 $\Re \omega = \left(-1.6^{+3.0}_{-2.1STAT} \pm 0.4_{SYST}\right) \times 10^{-4}$
 $\Im \omega = \left(-1.7^{+3.3}_{-3.0STAT} \pm 1.2_{SYST}\right) \times 10^{-4}$
 $|\omega| < 1.0 \times 10^{-3}$ at 95% C.L.

$$-\ln \text{ the B system } [\text{Alvarez, Bernabeu, Nebot JHEP 0611, 087]}$$

 $-0.0084 \le \Re \omega \le 0.0100$ at 95% C.L.

KLOE-2 at upgraded DAΦNE

Upgrade of DA Φ NE in luminosity:

Crabbed waist scheme at DA Φ NE (proposal by P. Raimondi)

- increase L by a factor O(5)
- requires minor modifications
- relatively low cost

- KLOE-2 Plan:
 phase 0: KLOE restart taking data end 2009 with a minimal upgrade (L~5 fb⁻¹)
 phase 1: full KLOE upgrade (KLOE-2) > 2011 (L>20 fb⁻¹)

Physics issues:

- Neutral kaon interferometry, CPT symmetry & QM tests
- Kaon physics, CKM, LFV, rare K_s decays
- η,η' physics
- Light scalars, $\gamma\gamma$ physics
- Hadron cross section at low energy, muon anomaly

Detector upgrade issues:

- <u>Successful</u> experimental test at DAΦNE

- Inner tracker R&D
- γγ tagging system
- Calorimeter, increase of granularity
- FEE maintenance and upgrade
- Computing and networking update
- etc.. (Trigger, software, ...)

Helicity suppressed

P,, decays

$$\frac{\Gamma(\mathbf{P}_{\ell 2(\gamma)})}{8\pi} = \frac{\mathbf{G}_{\mathbf{F}}^{2} |\mathbf{V}_{uq}|^{2}}{8\pi} f_{\mathbf{P}}^{2} m_{\ell} M_{\mathbf{P}} (1 - m_{\ell}^{2}/M_{\mathbf{P}}^{2})^{2} (1 + C_{\mathbf{P}\ell})$$
Inputs from theory: Inputs from experiment:

 $\Gamma(\mathbf{P}_{\ell 2(\gamma)})$ Rates with we treatment of ra

- Rates with well-determined treatment of radiative decays:
 - Branching ratios
 - lifetimes

Radiative inclusive electroweak corrections

CPP

decay constants

Used to determine pseudoscalar decay constants

Small uncertainties for ratios: $\Gamma(K_{\mu^{2}(\gamma)})/\Gamma(\pi_{\mu^{2}(\gamma)})$ f_{κ}/f_{π} from lattice \rightarrow determine V_{us}/V_{ud}
[Mariciano] $R_{P}=\Gamma(P_{e^{2}(\gamma)})/\Gamma(P_{\mu^{2}(\gamma)})$ no $f_{P} \rightarrow$ test lepton universality

[Cirigliano, Rosell]

Decay constants & f(0)

In the Standard Model f_P can be determined from the measurement of Γ ($P_{\ell^2(\gamma)}$) and the value of the relevant CKM matrix element.

f_{_}=130.4(2) MeV

f_κ = 156.1(8) MeV

V_{us} = 0.2247(12) from KI3 $f_{\rm K}/f_{\pi}$ **V**_{ud}=0.97425(23) from β decays 1.2 unitarity + V_{ud} , $f_0 V_{us}$, $\Gamma (P_{P2(\gamma)})$ HPQCD $f_{\kappa}/f_{\pi} = 1.1928(61)$ -UKQCD 1.18 $f_{+}(0) = 0.9612(47)$ $f_{+}(0)$ RBC-UKQCD 0.8 correlation 0.96 0.98

sensitivity to NP: charged Higgs

Pseudoscalar currents, e.g. due to H[±], affect the K width:

$$\frac{\Gamma(M \to \ell \nu)}{\Gamma_{SM}(M \to \ell \nu)} = \left[1 - \tan^2 \beta \left(\frac{m_{s,d}}{m_u + m_{s,d}} \right) \frac{m_M^2}{m_H^2} \right]^2 \quad \text{for } \mathsf{M} = \mathsf{K}, \ \pi$$
Hou, Isidori-Paradisi

$$R_{\ell 23} = \left| \frac{V_{us}(K_{\mu 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\mu 2})} \right|$$

KLOE: R₁₂₃ = 1.008(8)

(unitarity for K_{I3} and β -decays is used)

R₁₂₃ sensitivity to H[±] exchange

$$R_{\ell 23} = \left| 1 - \frac{m_{K^+}^2}{m_{H^+}^2} \left(1 - \frac{m_{\pi^+}^2}{m_{K^+}^2} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

Same effect for scalar ff

Callan-Treiman relation

Check from measurement of scalar ff slopes in K μ 3 and use of dispersive parametrization [Stern et al] [Pich et al] (further info from τ)

 f_{κ}/f_{π} = 1.189(7) from HPQCD-UKQCD

The special role of $\Gamma(K_{2})/\Gamma(K_{1})$ SM: very well known no hadronic uncertainties (no f_{μ}) [Masiero, Paradisi, In MSSM, LFV can give up to % deviations Petronzio] NP dominated by contribution of ev_{τ} final state: $\mathsf{R}_{\mathsf{K}} \approx \frac{\Gamma(\mathsf{K} \rightarrow \mathsf{ev}_{\mathsf{e}}) + \Gamma(\mathsf{K} \rightarrow \mathsf{ev}_{\tau})}{\Gamma(\mathsf{K} \rightarrow \mu v_{..})}$ $- \mathbf{v}_{e} \mathbf{v}_{\mu} \mathbf{v}_{\tau}$ $R_{\kappa} \approx R_{\kappa}^{SM} [1 + \frac{m_{\kappa}^{2}}{m_{\star}^{4}} - \frac{m_{\tau}^{2}}{m_{\star}^{2}} |\Delta_{R}^{31}|^{2} \tan^{6}\beta]$ $eH^{\pm}\nu_{ au}
ightarrow rac{g_2}{\sqrt{2}} rac{m_{ au}}{M_W} \Delta_R^{31} \tan^2 eta$ 1% effect (Δ^{R}_{31} ~5x10⁻⁴, tan β ~40, m_µ~500GeV) not unnatural Present accuracy on R_{κ} @ 6% Need for precise measurements

 K_{e2}/K_{u2} : SM prediction

R_K: KLOE vs NA62

K_{e2} On tape ~ 30,000 kine rejection ~10³ @ $ε_{12}$ ~60% EMC e/μ rejection ~10³ ~ 100,000 ~10³ - 1 p₁ (20-60GeV) ~10⁶

NA62: kinematics & e id

KLOE: kinematics & e id

Experimental tricks: NA62

"Catastrophic" energy loss by muons in LKr. Muons with E/p>0.95 are identified as electrons. $P(\mu \rightarrow e) \sim 3 \times 10^{-6}$

Pb wall ($\sim 10X_0$) between the HOD planes: pure μ samples (electron contamination <10⁻⁷)

Experimental tricks: KLOE

Drift Chamber inner wall radiography

 $\Delta(\mu m)$

Use ϕ decay kinematics for a redundant determination of K momentum but... $\beta \kappa \sim 0.2$

precise knowledge of material budget mandatory

NA62: result

$$R_{\kappa} = (2.500 \pm 0.012_{stat} \pm 0.011_{syst}) \times 10^{-5}$$

Preliminary result based on ~1/2 sample ~50,000 events

The whole sample will allow a statistical uncertainty $\sim 0.3\%$, and total uncertainty of 0.4-0.5%.

KLOE: result R_{κ} = (2.493 ± 0.025_{stat} ± 0.019_{syst}) x10⁻⁵ Events/(700 MeV²) Data About 14K events selected MC 6000 Background ~17% background ⁻ Κ_{e2ν} (Εγ>10 MeV) error dominated by statistics 4000 (Ke2 + C.S.) 2000

-2000

0

2000

 $M^2_{lep}\,(MeV^2)$

6000

4000
KLOE: result

R_{κ} : WA & constraints on NP

0.56% accuracy

Radiative decays

$K \rightarrow ev\gamma$: amplitudes

$$\frac{d\Gamma(K \rightarrow e\nu\gamma)}{dx \, dy} = \rho_{\text{IB}}(x, y) + \rho_{\text{SD}}(x, y) + \rho_{\text{INT}}(x, y) \qquad \begin{array}{l} x = 2E_{\gamma}^{*}/m_{K} \\ y = 2E_{e}^{*}/m_{K} \end{array}$$

$$\rho_{\text{SD}}(x, y) = \frac{G_{F}^{2}|V_{us}|^{2}\alpha}{64\pi^{2}}m_{K}^{5}((V + A)^{2}f_{\text{SD}+}(x, y) + (V - A)^{2}f_{\text{SD}-}(x, y))$$

V, *A*: effective vector and axial couplings

$K \rightarrow ev\gamma$: KLOE measurement

K_{e2v} spectrum vs O(p4) ChPT

in agreement with ChPT O(p^4) prediction, **1.447** × **10**⁻⁵ [Bijnens, Ecker, Gasser '93] KLOE MC implements O(p^4) ChPT for SD – used in analysis of R_K Validated to within 4.6% - systematic error on R_K from SD = 0.2%

$K_{_{e2\gamma}}$ is there any slope ?

0

0

100

200

300

 E_{ν}^{*} [MeV]

 $\chi^2 = 1.9/3$

Compare to ChPT O(
$$p^6$$
):
 $V_0 + A \approx 0.116$
 $\lambda \approx 0.4$

Chen, Geng, Lih '08

$K_{e2\gamma}$ alternative models

Light Front Quark Model with parameters as in Chen, Geng, Lih, '08

Excluded by our data $\chi^2 = 127/5$

Chen, Geng, Lih '08

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$: amplitudes

Kinematic variable:

$$W^2 = rac{(p_\pi \cdot p_\gamma)(p_K \cdot p_\gamma)}{m_K^2 m_\pi^2}$$

$$\frac{\partial \Gamma^{\pm}}{\partial W} = \underbrace{\frac{\partial \Gamma_{\text{IB}}^{\pm}}{\partial W}}_{\text{Inner Bremsstrahlung (IB)}} \begin{bmatrix} 1 + 2\cos\left(\pm\phi + \delta_1^1 - \delta_0^2\right) |X_E| W^2 \\ \text{Inner Bremsstrahlung (IB)} \\ + m_{\pi}^4 m_K^4 \left(|X_E|^2 + |X_M|^2\right) W^4 \end{bmatrix}$$

Direct Emission (DE)

$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$: NA48 measurement

K[±]→ π[±]γγ: NA48 measurement 1164 K^{\pm} → π[±]γγ candidates in 40% of NA48/2 data. (About 40 times more than previous world sample!)

Assume ChPT $\mathcal{O}(p^6)$ and $\hat{c} = 2$:

(preliminary)

 ${\rm Br}({\rm K}^{\pm} \to \pi^{\pm} \gamma \gamma)_{{\rm \hat{c}}={\rm 2}, \mathcal{O}({\rm p}^{6})} \ = \ ({\rm 1.07} \pm 0.04_{\rm stat} \pm 0.08_{\rm syst}) \cdot 10^{-6}$

Model independent measurement and \hat{c} extraction in preparation.

 $K^{\pm} \rightarrow \pi^{\pm} \gamma e^{+} e^{-}$: NA48 measurement

Same as $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$

Fit $m_{ee\gamma}$ distribution for \hat{c} using $\mathcal{O}(p^6)$ ChPT:

with an internal γ conversion.

$$\hat{c} = 0.90 \pm 0.45$$

 $(\chi^2/N_{dof} = 8.1/17)$

 $\mathrm{Br}(\mathrm{K}^{\pm} \to \pi^{\pm} \mathrm{e}^{+} \mathrm{e}^{-} \gamma)_{\mathrm{m}_{\mathrm{e}\mathrm{e}\gamma} > 260 \mathrm{\ MeV}} = (1.19 \pm 0.12_{\mathrm{stat}} \pm 0.04_{\mathrm{syst}}) \cdot 10^{-8}$

$K \rightarrow \pi v v$: introduction

Standard Model (Buras et al., Mescia and Smith, Brod and Gorbahn):

$$\mathbf{B}(K_L^0 \to \pi^0 \nu \overline{\nu}) = 1.8 \, x \, 10^{-10} \left(\frac{\mathrm{Im} \, \lambda_t}{\lambda^5} \, X(x_t) \right)^2 = 2.76 \pm 0.40 \, x \, 10^{-11}$$
$$\mathbf{B}(K^+ \to \pi^+ \nu \overline{\nu}) \sim 1.0 \, x \, 10^{-10} \, A^4 \left[\eta^2 + \left(\rho_0 - \rho \right)^2 \right] = 8.5 \pm 0.7 \, x \, 10^{-11}$$

$K \rightarrow \pi v v$: NP sensitivity

deviations from SM >O(10%) even within MFV

$K^{\pm} \rightarrow \pi^{\pm} \nu \nu$: BNL method

stop low energy kaons in active degrader

Determine everything possible about the K⁺ and π⁺
* π⁺/μ⁺ particle ID better than 10⁶ (π⁺-μ⁺-e⁺)
Eliminate events with extra charged particles or *photons** π⁰ inefficiency < 10⁻⁶

$K^{\pm} \rightarrow \pi^{\pm} \nu \nu$: E949 improvements

Momentum (MeV/c)

$K^{\pm} \rightarrow \pi^{\pm} \nu \nu$: E949 improvements

Final results from E787/E949

7 events observed

$$B(K^+ \to \pi^+ \nu \overline{\nu}) = 1.73^{+1.15}_{-1.05} x 10^{-10}$$

Probability that All 7 events are due to background: 0.001

Prospects for continuing at JPARC or FNAL (Project X) ~ 1000 events

$K^{\pm} \rightarrow \pi^{\pm} \nu \nu$: NA62 method

Goals:

- $O(100) \text{ K}^+ \rightarrow \pi^+ \nu \,\overline{\nu} \text{ events}$
- ~10% background

● BR(SM) ~ 8.5×10⁻¹¹

- Acceptance: 10%
- K decays: ~10¹³

Principles:

- "High" momentum K⁺ beam: easier rejection of the π^0 induced background
- Decay in-flight technique: beam-backgrounds suppressed wrt stopping kaon experiments
- Experimental techniques to exploit:
 - (1) Kinematic rejection: against 2-body and 3-body backgrounds
 - (2) Precise timing: matching of the outgoing π^+ with the correct parent K⁺
 - (3) Vetoes: rejection of events with γ and μ in final state
 - (4) Particle Identification: K/ π (in the primary beam), π/μ (final state)

Decay Mode	Events	
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]	55 evt/year	
$\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} [\eta_{\pi 0} = 2 \times 10^{-8} \ (3.5 \times 10^{-8})]$	4.3% (7.5%)	
$K^+ \rightarrow \mu^+ \nu$	2.2%	
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%	
Other 3 – track decays	≤1.5%	
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%	
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%	
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible	
Expected background	≤13.5% (≤17%)	

E391a Detector $K_1 \rightarrow \pi^0 \nu \nu$

$K_L \rightarrow \pi^0 vv$: E391 new run result

Acceptance ~0.98% (cf previous run: 0.67%)

same single event sensitivity 2.95x10⁻⁸ with ~70% stat.

No event observed in data (0.44 exp. background)

Preliminary result: BR(K₁ $\rightarrow \pi^{0}\nu\nu$)<6.8x10⁻⁸ (90% CL)

Previous run BR($K_1 \rightarrow \pi^0 \nu \nu$)<6.7x10⁻⁸ (90% CL)

Combination is ongoing

Prospects @ JPARC S/beam bkg 1/240 upgrade detector KOTO

Conclusion

Very precise tests of SM with kaons:

CP violation

 $Re(\epsilon'/\epsilon) = (16.8 \pm 1.4) \times 10^{-4}$

$$\epsilon_{\kappa}$$
 = (2.221 ± 0.006) x 10⁻³

CPT invariance $M_{\kappa}-M_{\bar{\kappa}} = (-0.1\pm2.0)x10^{-19} \text{ GeV}$ for $\Delta\Gamma=0$

Tests with helicity suppressed

 $R_{123} = 1.008 \pm 0.008$

 R_{κ} = (2.493 ± 0.014) x10⁻⁵

Many new precise results on radiative decays

Start exploring $K \rightarrow \pi \nu \nu$

G_c universality violation Universality of Weak coupling- $G_{F}=(g_{W}/M_{W})^{2}$ $|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 \equiv 1$ $G_{F}^{2} \equiv G_{CKM}^{2} = (|V_{ud}|^{2} + |V_{us}|^{2}) G_{F}^{2}$ uHW Sensitivity to new physics : W *naively* Tree level a~1 M_м~10 TeV $G_{CKM} = G_{F} [1 + a(M_{W}/M_{M})^{2}]$ M_м~1 TeV <u>loops</u> $a \sim g_w^2 / (16\pi^2)$

sensitivity to NP: MSSM [R. Barbieri '85,

[© Mescia, Paradisi] 63

V_{us} from au

check with kaons on exclusive modes(\sim 70% of R_s):

(46% of R_s) BR(K π v) need precise form factor parameters

Prediction (no exp. Syst. included): BR($K_s \pi^- v$) = 0.427(11)(21_{model})

In agreement with measured values but still limited accuracy (modeling)

Many new results from Belle-BaBar expected

V_{ud} from Fermi transitions

$$V_{ud}^2 = rac{K}{2G_F^2\overline{\mathcal{F}t}(1+oldsymbol{\Delta_R})}$$

 $\mathcal{F}t = ft(1 + \delta'_R)(1 - (\delta_C - \delta_{NS})) = \text{constant}$

Measured on 13 Nuclei:

 $t = t_{1/2}$ /BR = partial half life

 $f = \text{statistical rate function } f(Z,Q_{ec})^*$

Radiative and isospin breaking corrections:

 Δ_{R} =2.361(38)% Nucleus-independent [Marciano Sirlin]

- δ'_{R}, δ_{NS} Nucleus-dependent
- δ_c Nucleus-dependent isospin breaking

* Z dependence account for e wave function

V_{ud} from Fermi transitions

$$V_{ud}^2 = rac{K}{2G_F^2\overline{\mathcal{F}t}(1+oldsymbol{\Delta_R})}$$

$$V_{ud} = 0.97425(23)$$

[Towner, Hardy

2008]

Error budget:

V_{us} and V_{us}/V_{ud} determination

K₂₃ decays

Vector transition protected against SN(3) corrections:

[Ademollo Gatto]

$\Gamma(\mathsf{K}_{\ell^{3}(\gamma)}) = \frac{C_{\kappa^{2}}^{2} M_{\kappa^{5}}^{5}}{192\pi^{3}} S_{EW} \mathsf{G}_{\mathsf{F}}^{2} |\mathsf{V}_{\mathsf{us}}|^{2} |f_{+}^{\kappa^{0}\pi^{-}}(0)|^{2} \times I_{\kappa_{\ell}}(\{\lambda\}_{\kappa_{\ell}}) (1 + 2\Delta_{\kappa}^{SU(2)} + 2\Delta_{\kappa_{\ell}}^{EM})$

with $K \in \{K^+, K^0\}$; $\ell \in \{e, \mu\}$, and: $C_{\kappa^2}^2$ 1/2 for K^+ , 1 for K^0

 S_{EW} Universal SD EW correction (1.0232)

Inputs from theory:

 $f_{+}^{\kappa^{0}\pi^{-}}(0)$

Hadronic matrix element (form factor) at zero momentum transfer (*t* = 0)

 $\Delta_{\rm KP}{}^{\rm EM}$

Form-factor correction for *SU*(2) breaking

Form-factor correction for long-distance EM effects

Inputs from experiment:

 $\Gamma(\mathbf{K}_{\ell^{3}(\gamma)})$ Rate

 $I_{\kappa\ell}(\{\lambda\}_{\kappa\ell})$

Rates with well-determined treatment of radiative decays:

- Branching ratios
- Kaon lifetimes

Integral of dalitz density (includes ff) over phase space:

- K_{e_3} : Only λ_{+} (or λ_{+}' , λ_{+}'')
- $K_{\mu 3}$: Need $\lambda_{_{+}}$ and $\lambda_{_{0}}$

P,, decays

$$\frac{\Gamma(\mathbf{P}_{\ell 2(\gamma)})}{8\pi} = \frac{\mathbf{G}_{\mathbf{F}}^{2} |\mathbf{V}_{uq}|^{2}}{8\pi} f_{\mathbf{P}}^{2} m_{\ell} M_{\mathbf{P}} (1 - m_{\ell}^{2}/M_{\mathbf{P}}^{2})^{2} (1 + C_{\mathbf{P}\ell})$$
Inputs from theory: Inputs from experiment:

 $\Gamma(\mathbf{P}_{\ell 2(\gamma)})$ Rates with we treatment of ra

- Rates with well-determined treatment of radiative decays:
 - Branching ratios
 - lifetimes

Radiative inclusive electroweak corrections

CPP

decay constants

Used to determine pseudoscalar decay constants

Small uncertainties for ratios: $\Gamma(K_{\mu^{2}(\gamma)})/\Gamma(\pi_{\mu^{2}(\gamma)})$ f_{κ}/f_{π} from lattice \rightarrow determine V_{us}/V_{ud}
[Mariciano] $R_{P}=\Gamma(P_{e^{2}(\gamma)})/\Gamma(P_{\mu^{2}(\gamma)})$ no $f_{P} \rightarrow$ test lepton universality

[Cirigliano, Rosell]

Results for K_L BRs, τ

18 input measurements

5 KTeV ratios NA48 BR(Ke3/2 track) **NA48** $\Gamma(3\pi^0)$ [prelim.] **4 KLOE** Brs **KLOE**, **NA48** BR($\pi^+\pi^-/K/3$) **KLOE**, **NA48** BR($\gamma\gamma/3\pi^0$) **PDG** ETAFIT BR($2\pi^0/\pi^+\pi^-$) **KLOE** τ_i from $3\pi^0$ Vosburgh '72 τ_{i}

1 constraint: Σ BR = 1

BR(<i>Ke</i> 3)	0.4056(7)	1.1		
BR(<i>K</i> μ3)	0.2705(7)	1.1		
BR(3π ⁰)	0.1951(9)	1.2		
BR(π ⁺ π ⁻ π ⁰)	0.1254(6)	1.1		
BR(π ⁺ π ⁻)	1.997(7)×10⁻³	1.1		
BR(2πº)	8.64(4)×10 ⁻⁴	1.3		
BR(γγ)	5.47(4)×10 ⁻⁴	1.1		
τ	51.17(20) ns	1.1		
$\chi^2/ndf = 20.2/11 (4.3\%)$				

	PDG '04	This fit	
η ₊₋ x10³	2.284(14)	2.223(6)	~3.6 sigma change

Results for K[±] BRs, τ

25 input measurements:

5 older τ values	in PDG
-----------------------	--------

KLOE τ	BR(μv)	63.57(10)%	1.1
<mark>ΚLOE</mark> BR μν, ππ ^ο	BR(ππ ⁰)	20.64(7)%	1.1
<mark>KLOE</mark> <i>K</i> e3, <i>K</i> μ3 BRs	BR(πππ)	5.593(32)%	1.1
with dependence on $ au$	BR(Ke3)	5.078(25)%	1.2
ISTRA+ BR <i>K</i> e3/ππ⁰	BR(<i>K</i> μ3)	3.365(26)%	1.7
NA48/2 BR <i>K</i> e3/ππ⁰, <i>K</i> μ3/ππ⁰	BR(ππ ⁰ π ⁰)	1.750(26)%	1.1
E865 BR Ke3/KDal	$ au_{\pm}$	12.379(21) ns	1.7
<mark>3 old</mark> BR ππº/μν			
2 old BR <i>Ke</i> 3/2 body	χ²/ndf	= 42.6/19 (0.15%)	net
3 Ku3/Ke3 (2 old)	I	a^{2}	0 0/ \

2 old + 1 KLOE results on 3π

1 constraint: Σ BR = 1

Improves to χ^2 /ndf = 24.8/15 (5.3%) with no changes to central values (but τ) or errors, if 5 older τ_{\pm} measurements replaced by PDG avg (with S = 2.1)

K₁₃ form-factor slopes

W

Hadronic matrix element:

 $\langle \pi | J_{\alpha} | K \rangle = f(0) \times [\tilde{f}_{+}(t)(P+p)_{\alpha} + \tilde{f}_{-}(t)(P-p)_{\alpha}]$

 $f_{-}(t)$ term only important for $K_{\mu3}$. For $K_{\mu3}$, use $f_{+}(t)$ and $f_{0}(t) = f_{+}(t) + \frac{t}{m_{\kappa}^{2} - m_{\pi^{+}}^{2}} f_{-}(t)$

For V_{us} , need integral over phase space of squared matrix element Expand form factor:

Linear: Quadratic: $\tilde{f}_{+,0}(t) = 1 + \lambda_{+,0} [t/m_{\pi^+}^2]$ Quadratic: $f_{+,0}(t) = 1 + \lambda_{+,0}' [t/m_{\pi^+}^2] + 1/2 \lambda_{+,0}'' [t/m_{\pi^+}^2]^2$ Pole: $\tilde{f}_{+,0}(t) = \frac{M_{V,S}^2}{M_{V,S}^2 - t} \quad \lambda' = (m_{\pi^+}/M)^2$ $\lambda'' = 2\lambda'^2$

poor sensitivity to quadratic terms
Fit to K_{/3} form-factor slopes e3-μ3 averages from KLOE KTeV ISTRA+ NA48

K/3 fit, no NA48 *K* μ 3: χ^2 =12.6/10 (24.9%) *K*/3 fit, all data, χ^2 =54/13 (10⁻⁶)

Fit to K₁₃ form-factor slopes e3-µ3 averages from KLOE KTeV ISTRA+ NA48

K/3 fit, no NA48 *K* μ 3: χ^2 =12.6/10 (24.9%) *K*/3 fit, all data, χ^2 =54/13 (10⁻⁶)

SU(2) and em corrections

New values for $\delta \overset{\kappa_{e_{em}}}{}_{em}$ from ChPT O(e²p²) [Cirigliano, Giannotti, and Neufeld, 0807.4507]

error matrix available

	$\delta \kappa_{SU(2)}(\%)$	δ ^{Ke} _{em} (%)		<i>K</i> ⁰ <i>e</i> 3	K ⁰ µ 3	K+e3	K+µ 3
K ⁰ e3	0	+0.50(11)	<i>K</i> ⁰ <i>e</i> 3	1	0.69	0.08	-0.15
K ⁰ µ 3	0	+0.70(11)	K ⁰ µ 3		1	-0.15	0.08
K+e3	+2.36(22)	+0.05(13)	K+e3			1	0.76
K+µ 3	+2.36(22)	+0.01(12)	K+µ 3				1

$|V_{us}| f_{+}(0)$ from $K_{/3}$ data

Average: $|V_{us}| f_{+}(0) = 0.2167(5)$ $\chi^{2}/ndf = 2.83/4 (59\%)$

SU(2) breaking correction comparing values from K_L and K[±]: 2.81(38)%. χ_{PT} prediction 2.36(22)% (Kastner and Neufeld: 2.9(4)%).

[Mariciano] **Small uncertainties in** f_{κ}/f_{π} from lattice \rightarrow determine V_{us}/V_{ud} Reduced uncertainty from e.m. Structure Dependence corrections

$$\frac{\Gamma(\mathbf{K}_{\mu 2(\gamma)})}{\Gamma(\mathbf{\pi}_{\mu 2(\gamma)})} = \frac{|\mathbf{V}_{us}|^2}{|\mathbf{V}_{ud}|^2} \times \frac{f_K^2}{f_\pi^2} \times \frac{M_K (1 - m_\mu^2 / M_K^2)^2}{m_\pi (1 - m_\mu^2 / m_\pi^2)^2} \times 0.9930(35)$$

WA dominated by KLOE $BR(K^+ \to \mu^+ \nu(\gamma)) = 0.6366(17)$ $|V_{us}|/|V_{ud}| f_K/f_{\pi} = 0.2760(6)$

 $f_{\rm K}/f_{\pi}$ = 1.1890(7) HPQCD-UKQCD

$$V_{us}/V_{ud} = 0.2322(15)$$

Evaluations of $f_+(0)$ and f_{κ}/f_{π}

CKM unitarity

Decay constants & f(0)

In the Standard Model f_P can be determined from the measurement of Γ ($P_{\ell^2(\gamma)}$) and the value of the relevant CKM matrix element.

f_{_}=130.4(2) MeV

f_κ = 156.1(8) MeV

V_{us} = 0.2247(12) from KI3 $f_{\rm K}/f_{\pi}$ **V**_{ud}=0.97425(23) from β decays 1.2 unitarity + V_{ud} , $f_0 V_{us}$, $\Gamma (P_{P2(\gamma)})$ HPQCD $f_{\kappa}/f_{\pi} = 1.1928(61)$ -UKQCD 1.18 f(0) = 0.9612(47)*t*(U) RBC-UKQCD 0.8 correlation 0.96 0.98

sensitivity to NP: Z'oology

 $\begin{aligned} \mathbf{G}_{\mathsf{F}} = \mathbf{G}_{\mathsf{CKM}} [1\text{-}0.007 \mathbf{Q}_{\mathsf{eL}} (\mathbf{Q}_{\mu\mathsf{L}} - \mathbf{Q}_{\mathsf{dL}}) \frac{2 \ln(\mathsf{m}_{Z'}/\mathsf{m}_{W})}{(\mathsf{m}_{Z'}^{2}/\mathsf{m}_{W}^{2} - 1)}] \\ & \text{SO}(10) \ Z\chi \ \text{Boson:} \ \mathbf{Q}_{\mathsf{eL}} = \mathbf{Q}_{\mu\mathsf{L}} = -3\mathbf{Q}_{\mathsf{dL}} = 1 \quad \text{[Marciano]} \\ & \mathbf{m}_{Z\gamma} > 750 \ \text{GeV} \ 95\%\text{CL} \end{aligned}$

[K.Y. Lee]

Tree level breaking of unitarity in models with non-universal gauge interaction

sensitivity to NP: charged Higgs

Pseudoscalar currents, e.g. due to H[±], affect the K width:

$$\frac{\Gamma(M \to \ell\nu)}{\Gamma_{SM}(M \to \ell\nu)} = \left[1 - \tan^2\beta \left(\frac{m_{s,d}}{m_u + m_{s,d}}\right) \frac{m_M^2}{m_H^2}\right]^2 \quad \text{for M = K, } \pi \text{Hou, Isidori-Paradisi}$$

JHEP 0804:059

The observable

$$R_{\ell 23} = \left| \frac{V_{us}(K_{\mu 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\mu 2})} \right|$$

KLOE:

• R_{I23} = 1.008(8)

(unitarity for K_{I3} and β -decays is used)

 $\mathbf{R}_{123} \text{ sensitivity to } \mathbf{H}^{\pm} \text{ exchange}$ $R_{\ell 23} = \left| 1 - \frac{m_{K^{\pm}}^2}{m_{H^{\pm}}^2} \left(1 - \frac{m_{\pi^{\pm}}^2}{m_{K^{\pm}}^2} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|^{20}$ 100

Callan-Treiman relation

 f_{κ}/f_{π} = 1.189(7) from HPQCD-UKQCD

83

V_{us} from inclusive $\tau \rightarrow v X_{us}$ involves PQCD

S. Banerjee arXiv:0811.1429

~3 σ lower wrt kaons (same fitting m_s, V_{us}) Theory? Exp.?

X_{us}^{-}	$\mathcal{B}_{\mathrm{World Averages}}(\%)$
K^{-} [τ decay]	0.690 ± 0.010
$([K_{\mu 2}])$	(0.715 ± 0.004)
$K^{-}\pi^{0}$	0.426 ± 0.016
$\bar{K}^0\pi^-$	$0.835 \pm 0.022 \ (S = 1.4)$
$K^{-}\pi^{0}\pi^{0}$	0.058 ± 0.024
$\bar{K}^0 \pi^0 \pi^-$	0.360 ± 0.040
$K^{-}\pi^{-}\pi^{+}$	$0.290 \pm 0.018 \ (S = 2.3)$
$K^-\eta$	0.016 ± 0.001
$(\bar{K}3\pi)^-$ (est'd)	0.074 ± 0.030
$K_1(1270) \to K^- \omega$	0.067 ± 0.021
$(\bar{K}4\pi)^-$ (est'd)	0.011 ± 0.007
$K^{*-}\eta$	0.014 ± 0.001
$K^-\phi$	$0.0037 \pm 0.0003~(S=1.3)$
TOTAL	2.8447 ± 0.0688
	(2.8697 ± 0.0680)

check with kaons on exclusive modes(~70% of R_s): (24% of R_s) BR(Kv) = 0.69(1) vs 0.715(4) from Kµ2 but BR(Kv)/BR(π v) ok

 V_{us} from au

check with kaons on exclusive modes(\sim 70% of R_s):

(46% of R_s) BR(K $\pi\nu$) need precise form factor parameters

Prediction (no exp. Syst. included): BR(K_sπ⁻ν) = 0.427(11)(21_{model})

In agreement with measured values but still limited accuracy (modeling)

Many new results from Belle-BaBar expected

lepton universality

For each state of kaon charge, we evaluate:

$$r_{\mu e} = \frac{(R_{\mu e})_{\text{obs}}}{(R_{\mu e})_{\text{SM}}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e 3}} \cdot \frac{I_{e 3} \left(1 + \delta_{e 3}\right)}{I_{\mu 3} \left(1 + \delta_{\mu 3}\right)} = \frac{g_{\mu}^2}{g_e^2}$$

$r_{\mu e} = 1.0050(44)$ from KI3

 $\tau \rightarrow h \nu \nu$ decays:

$$(r_{\mu e})_{\tau} = 1.0005(41)$$
 [PDG08]

 $(r_{\mu e})_{\pi/2} = 1.0030(32)$ Bryman @ Seattle '08

 $r_{\mu e} = 1.0028(22)$ K, τ , π average

The special role of $\Gamma(K_{2})/\Gamma(K_{1})$ SM: very well known no hadronic uncertainties (no f_{μ}) [Masiero, Paradisi, In MSSM, LFV can give up to % deviations Petronzio] NP dominated by contribution of ev_{τ} final state: $\mathsf{R}_{\mathsf{K}} \approx \frac{\Gamma(\mathsf{K} \rightarrow \mathsf{ev}_{\mathsf{e}}) + \Gamma(\mathsf{K} \rightarrow \mathsf{ev}_{\tau})}{\Gamma(\mathsf{K} \rightarrow \mu v_{..})}$ ν_eν_μν_τ $R_{\kappa} \approx R_{\kappa}^{SM} [1 + \frac{m_{\kappa}^{4}}{m_{\star}^{4}} - \frac{m_{\tau}^{2}}{m_{\star}^{2}} |\Delta_{R}^{31}|^{2} \tan^{6}\beta]$ $eH^{\pm}\nu_{ au}
ightarrow rac{g_2}{\sqrt{2}} rac{m_{ au}}{M_W} \Delta_R^{31} \tan^2 \beta$ 1% effect (Δ^{R}_{31} ~5x10⁻⁴, tan β ~40, m_µ~500GeV) not unnatural Present accuracy on R_{κ} @ 6% Need for precise measurements

New KLOE measurement

R_{κ} world average

CONCLUSION

$$V_{ud} = 0.97425(23)$$
agreement with
unitarity:
$$V_{us} = 0.2247(12)$$

$$I - V_{ud}^{2} - V_{us}^{2} = 4(6) \times 10^{-4}$$

$$V_{us}/V_{ud} = 0.2322(15)$$

Important constraints for physics BSM

US'

Kaon high precision observables

Vector transition protected against SD(3) corrections

Small uncertainties in f_{κ}/f_{π} from lattice

Other Vud determinations

neutron β **decay** not pure vector, needs g_A/g_V but no nuclear structure. $\delta V_{ud} \sim 0.002$, will be improved through asymmetry measuremnts at PERKEO, Heidelberg and UCNA, LANL. 2005 measurement of n lifetime (6σ away) serious problem!

 $V_{ud} = 0.9746(4)_{\tau_n}(18)_{g_A}(2)_{\rm RC}$

Ultracold

+ Need relatively small number of neutrons

 $π^+$ decay to $π^0$ ev th cleanest, promising in long term but BR~10⁻⁸ PIBETA at PSI has δV_{ud} ~0.003

$$V_{ud} = 0.9749(26) \left[\frac{BR(\pi^+ \to e^+ \nu_e(\gamma))}{1.2352 \times 10^{-4}} \right]^{\frac{1}{2}}$$

- *f*₊(0) = 0.964(5) UKQCD/RBC NF=2+1, DWF
- f_{κ}/f_{π} = 1.189(7) HPQCD-UKQCD(MILC) NF=2+1, Stag

RESULTS FROM 0⁺→0⁺ DECAY IN 2008

$$\mathbf{7}t = \frac{\mathbf{K}}{\mathbf{2G}_{v}^{2} (\mathbf{1} + \Delta_{R})}$$

✓ verified to ± 0.013%

2) Scalar current zero \checkmark limit, $C_s/C_v = 0.0011$ (14)

3) Precise value determined for $V_{\rm ud}$

1) G_v constant

$$V_{ud} = G_{v/G_{\mu}}$$

 $V_{ud} = 0.97425 \pm 0.00023$ Compare:
neutron $V_{ud} = 0.9746 \pm 0.0019$
pion $V_{ud} = 0.9749 \pm 0.0026$

I. S. Towner @ CKM08

Dominant K_L branching ratios

Absolute BR mmts to 0.5-1% using K_L beam tagged by $K_S \rightarrow \pi^+\pi^-$ 328 pb⁻¹ '01 + '02 data

 $13 \times 10^6 K_L$'s for counting (25%) 75% used to evaluate efficiencies 3000

BR's to $\pi e \nu$, $\pi \mu \nu$, and $\pi^+\pi^-\pi^0$:

- K_L vertex reconstructed in DC
- PID using decay kinematics
- Fit with MC spectra including radiative processes and optimized EmC response to $\mu /\pi / K_L$

BR to π $^{0}\pi$ $^{0}\pi$ 0 :

- vertex by EmC TOF (≥ 3 clusters)
- $\varepsilon_{\rm rec}$ = 99%, background < 1%

Particle Identification

- particle ID exploits EmC granularity: energy deposits into 5 layers in depth
- Combine infos with a neural network
- use pure sample of $K_L e3$ to correct cell response in MC and for NN training

K₁e3 control sample

Counting K_{e^2} events

NN output

Two-dimensional binned likelihood fit in the plane NN output - M^2_{lep} count 7060 + 6750 Ke2 events

Evaluations of $f_{+}(0)$

encouraging results from UKQCD/RBC NF=2+1, DWF, m_{π} >=300MeV: $f_{+}(0) = 0.964(5)$

Vud from Fermi transitions

$$\frac{\mathbf{G}_{F^{2}} |\mathbf{V}_{ud}|^{2}}{CVC} = \frac{K}{M_{\kappa} (1 - m_{\mu}^{2} / M_{\kappa}^{2})^{2}}$$

[Marciano Sirlin]

K_{u3} form-factor slopes

- Knowledge of $\tilde{f}_0(t)$ important to test reiman QCD parameters: $f_0(\Delta_{\kappa\pi}=m_{\kappa}^2-m_{\pi}^2) = f_{\kappa}/f_{\pi}$
- Linear parametrization not a good physics approximation: hints for $\lambda^{\prime\prime}_{0}$?
- Fractional partial width difference by varying slopes values :
- $\Delta(1/\Gamma d\Gamma/dt)$ [λ^{''}₀=0.4, 0] $\Delta(1/\Gamma d\Gamma/dt)$ [λ[']₀=14.7, 16]

 $\lambda \times 10^3$

Almost exact cancellation

 $\Delta(1/\Gamma d\Gamma/dt)$ [λ'_0 =14.7, 16: λ''_0 =0.4, 0]

 Correlation matrix from Ideal t-spectrum experiment:

$$\lambda'_{0} 1 -0.9996 -0.97 0.9 Franzini $\lambda''_{0} 1 0.98 -0.92 \lambda'_{+} 1 0.98 -0.92 \lambda'_{+} 1 -0.98 \lambda''_{+} 1$$$

