Results from ETMC in the light-quark sector

Gregorio Herdoiza

DESY, Zeuthen

ETM Collaboration

Sixth International Workshop on Chiral Dynamics, Bern, July 6-10 2009

ETM Collaboration

lattice QCD

Cyprus (Nicosia) C. Alexandrou, T. Korsec, G. Koutsou France (Orsay, Grenoble, CEA) R. Baron, B. Blossier, Ph. Boucaud, M. Brinet, J. Carbonell, V. Drach, P. Guichon, P.A. Harraud, M. Papinutto, O. Pène Germany (Berlin, Zeuthen, Hamburg, Münster) F. Farchioni, X. Feng, J. González López, G. Herdoiza, K. Jansen, I. Montvay, G. Münster, D. Renner, T. Sudmann, C. Urbach, M. Wagner Italy (Roma I, II, III, Trento) P. Dimopoulos, R. Frezzotti, V. Lubicz, G. Martinelli, G.C. Rossi, L. Scorzato, S. Simula, C. Tarantino, A. Vladikas Netherlands (Groningen) A. Deuzeman, E. Pallante, S. Reker Poland (Poznan) K. Cichy Spain (Barcelona, Sevilla, Valencia) F. De Soto, V. Giménez, F. Mescia, D. Palao, J. Rodríguez Quintero Switzerland (Bern) U. Wenger UK (Cambridge, Glasgow, Liverpool) Z. Liu, C. McNeile, C. Michael, A. Shindler

lattice QCD

Study QCD in a non-perturbative way

- Determine QCD parameters : α_S , Λ_{QCD} , quark masses, ...
- Determine hadronic properties :
 - Spectrum of mesons and baryons
 - Hadronic structure : form factors, scattering lengths,...
- Constrain effective theories :
 - Chiral Perturbation Theory (χPT)
 - Heavy Quark Effective Theory (HQET)
- Constraints on Standard Model parameters : CKM
 - New Physics : precision in the non-perturbative determinations of hadronic matrix elements ~> few percent
 - Control of systematic uncertainties in lattice QCD results

precision in lattice QCD results

Control of systematic uncertainties

- UV cutoff effects: lattice spacing a
- Finite Size Effects (FSE): lattice size L
- Number of dynamical flavours (u,d,s,c,... quarks) $N_f = 0; 2; 2 + 1; 2 + 1 + 1$
- Range of quarks masses : simulation/physics
- Operator renormalisation

Statistical errors

- Improvement in Monte Carlo algorithms
- Supercomputers
- Outline
 - Light-quark physics from $N_f = 2$ and $N_f = 2 + 1 + 1$ dynamical simulations

O(a) improvement, continuum limit $m_{\rm PS}L \gg 1$ rks) $N_{\rm f} = 0; 2; 2 + 1; 2 + 1 + 1$ applicability of $\chi {\rm PT}, {\rm HQET}$

non-perturbative

Wilson type fermions

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

ETMC results in the light-quark sector

lattice QCD: parameters landscape

- lattice spacing : a
- lattice size: L
- pion masses : m_{π}

(end 2008)

Wilson twisted mass lattice QCD (tmLQCD)

Lattice fermionic action

[Frezzotti, Grassi, Sint, Weisz, 1999]

$$S_F^{\rm imL} = a^4 \sum_x \tilde{\chi}(x) \Big[\gamma_\mu \tilde{\nabla}_\mu - r \frac{a}{2} \nabla^*_\mu \nabla_\mu + m_0 + i \gamma_5 \tau_3 \mu \Big] \chi(x)$$

 automatic O(a) improvement of parity-even correlators in maximally twisted lattice QCD [Frezzotti, Rossi, 2003]

- tuning of only one parameter: bare untwisted quark mass: $m_0 \rightarrow M_{\rm cr}$
- quark mass is then given by the twisted mass parameter : $M_q = \mu$
- no tuning of operator-specific improvement coefficients
- low computational cost

But:

- explicit breaking of parity and isospin: the largest cut-off effects are in m_π^0
- however, the breaking is an $\mathcal{O}(a^2)$ effect in physical quantities

$N_{\rm f}=2$ ensembles

Ensemble	$\beta = \frac{6}{g_0^2}$	<i>a</i> (fm)	V/a^4	m _{PS} L	$a\mu_l$	$m_{ m PS}$ (MeV)
D1	4.20	0.055	48 ³ · 96	3.6	0.0020	270
D_2			32 ³ · 64	4.2	0.0065	480
C_1	4.05	0.065	32 ³ · 64	3.3	0.0030	310
C_2				4.6	0.0060	430
C_3				5.3	0.0080	500
C_4				6.5	0.0120	610
C_5			24 ³ · 48	3.5	0.0060	430
C_6			20 ³ · 48	3.0	0.0060	430
B ₁	3.90	0.085	24 ³ · 48	3.3	0.0040	315
B ₂				4.0	0.0064	390
B ₃				4.7	0.0085	450
B_4				5.0	0.0100	490
B ₅				6.2	0.0150	600
B ₆			32 ³ · 64	4.3	0.0040	310
B ₇				3.7	0.0030	270
A ₂	3.80	0.100	24 ³ · 48	5.0	0.0080	410
A ₃				5.8	0.0110	480
A_4				7.1	0.0165	580

scaling to the continuum limit of $f_{\rm PS}$

 $a = 0.055, 0.065, 0.085, 0.100 \,\mathrm{fm}$

pion decay constant

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

Finite size effects

- non negligible FSE since relative stat. error : $\sim 1\%$ on $m_{\rm PS}$ and $f_{\rm PS}$
- relative deviation : $R_O = (O_\infty O_L)/O_\infty$

 $m_{\rm PS} \approx 300 \, {\rm MeV}$

for $m_{\rm PS}L > 3$, data lies in the exponential FSE regime

ensembles scaling FSE χ PT results PFF

finite size effects

Comparison of lattice data at several volumes to :

lacktriangleright relative deviation : $R_O = (O_\infty - O_L)/O_\infty$

- NLO χPT : GL
- resummed Lüscher formula : CDH

[Gasser, Leutwyler, 1987, 1988] [Colangelo, Dürr, Haefeli, 2005]

CDH (%) a (fm) meas.(%) GL (%) $m_{\rm PS}L_1 \rightarrow m_{\rm PS}L_2$ $(L_1 \rightarrow \infty)$ $(L_1 \rightarrow \infty)$ $(L_1 \rightarrow L_2)$ 0.085 $3.3 \rightarrow 4.3$ -1.8-0.6-1.2 $m_{\rm PS}$ 0.085 $3.3 \rightarrow 4.3$ +2.6+2.6+2.6f_{PS} -6.30.065 $3.0 \rightarrow 4.6$ -6.1-1.9 $m_{\rm PS}$ fps 0.065 $3.0 \rightarrow 4.6$ +10.7+7.0+9.0

CDH describes data in general better than GL but needs more parameters

Chiral Dynamics, Bern, 06.07.09

chiral perturbation theory :

$$f_{\pi}, m_{\pi}$$

• Use of χ PT to describe the dependence on :

- the quark mass μ
- finite spatial size L
- Simultaneous fit to $N_{\rm f}=2~\chi{\rm PT}$

$$\begin{split} m_{\text{PS}}^{2}(L) &= \chi_{\mu} \left[1 + \xi \ln(\chi_{\mu}/\Lambda_{3}^{2}) + T_{m}^{\text{NNLO}} + \sigma^{2} D_{m} \right] \cdot \left(K_{m}^{\text{CDH}}(L) \right)^{2} \\ f_{\text{PS}}(L) &= f_{0} \left[1 - 2\xi \ln(\chi_{\mu}/\Lambda_{4}^{2}) + T_{f}^{\text{NNLO}} + \sigma^{2} D_{f} \right] \cdot \left(K_{f}^{\text{CDH}}(L) \right)^{2} \end{split}$$

where $\chi_{\mu} = 2\widehat{B}_{0}\mu_{R}$, $\mu_{R} = 1/Z_{P}\mu$, $\xi = \chi_{\mu}/(4\pi f_{0})^{2}$, $f_{0} = \sqrt{2}F_{0}$

 $\begin{array}{l} \mathsf{data}: af_{\mathrm{PS}}, am_{\mathrm{PS}}, Z_{\mathrm{P}} \text{ and } r_{0}/a \\ \mathsf{parameters}: r_{0}f_{0}, r_{0}B_{0}, r_{0}\Lambda_{3}, r_{0}\Lambda_{4}, D_{m}, D_{t}, \{r_{0}/a(\mu=0)\}_{\beta}, \{D_{t_{0}}\}_{\beta} \\ \mathsf{derived quantities}: m_{u,d}, \langle \bar{q}q \rangle, \text{ low-energy constants}: \bar{t}_{3,4} \equiv \log(\Lambda_{3,4}^{2}/m_{\pi^{\pm}}^{2}) \\ \mathsf{Finite size corrections}: \\ (\mathrm{CDH}: \mathrm{Colangelo} \ et al., 2005) \\ \mathsf{Mass dependence}: \\ \mathrm{NLO} \ and \ \mathrm{NNLO} \ (extra \ parameters: r_{0}\Lambda_{1,2}, k_{M}, k_{F}) \\ \mathsf{Include } \mathcal{O}(a^{2}) \ terms \ in \ the \ fits \end{array}$

continuum χ PT at NLO : m_{PS}^2 vs. μ_R

 $\beta = 4.05 : a = 0.065 \text{ fm}$ $\beta = 3.90 : a = 0.085 \text{ fm}$

NLO without $O(a^2)$ terms excluding heavier masses

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

continuum χ PT at NLO : f_{PS} vs. μ_{R}

 $\beta = 4.05 : a = 0.065 \text{ fm}$ $\beta = 3.90 : a = 0.085 \text{ fm}$

NLO without $O(a^2)$ terms excluding heavier masses

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

ETMC results in the light-quark sector

χ PT fits : NLO

$$\begin{split} r_0 f_{\rm PS} &= r_0 f_0 \Big[1 - 2\xi \log(\chi_{\mu} / \Lambda_4^2) + (a/r_0)^2 D_f \Big] \ K_f^{\rm CDH}(L) \\ (r_0 m_{\rm PS})^2 &= \chi_{\mu} r_0^2 \Big[1 + \xi \log(\chi_{\mu} / \Lambda_3^2) + (a/r_0)^2 D_m \Big] \ \left(K_m^{\rm CDH}(L) \right)^2 \end{split}$$

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

χ PT fits : discretization effects

$$r_0 f_{\rm PS} = r_0 f_0 \Big[1 - 2\xi \log(\chi_{\mu} / \Lambda_4^2) + (a/r_0)^2 D_f \Big] K_f^{\rm CDH}(L)$$

- fit of f_{PS} and m_{PS} combining a₁ = 0.055, a₂ = 0.065, a₃ = 0.085 fm [PRELIMINARY]
 mass dependence : NLO higher masses (m_{PS} ~ 600 MeV) not included
- volume dependence : CDH

	$D_{m,f}=0$	fit D _{m,f}	fit D _{m,f}
ai	<i>a</i> _{2,3}	<i>a</i> _{2,3}	<i>a</i> _{1,2,3}
	3.38(7)	3.51(7)	3.47(6)
\overline{I}_4	4.62(3)	4.63(3)	4.59(3)
\widehat{B}_0 [GeV]	2.55(4)	2.89(14)	2.79(12)
f ₀ [MeV]	121.62(7)	121.58(7)	121.65(6)
<i>r</i> ₀ [fm]	0.449(3)	0.429(9)	0.439(6)
$\chi^2/{ m dof}$	30.8/21	23.2/19	26.7/23

Values of $D_{m,f}$: $D_m = -1.08(95)$; $D_f = 0.70(56)$

χ PT fits : NNLO

$eta = 4.05 : a = 0.065 \, { m fm} \\ eta = 3.90 : a = 0.085 \, { m fm}$

$\chi^2/dof = 23.7/19$

NNLO excluding heavier masses

NNLO including heavier masses

NNLO: Input some knowledge on $\overline{l}_{1,2}$, k_M and k_F in the fit: $\overline{l}_1 = -0.4 \pm 0.6$ $\overline{l}_2 = 4.3 \pm 0.1$ $k_M = k_F = 0 \pm 10$

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

ETMC results in the light-quark sector

Results : LEC, m_q , $\langle \bar{q}q \rangle$, ...

Estimate systematic effects

[PRELIMINARY]

- discretization
- NLO/NNLO
- FSE

<u>7</u> 3	3.49(19)
Ī4	4.57(15)
\widehat{B}_0 [GeV]	2.77(19)
f ₀ [MeV]	121.8(5)
$(-\langle \bar{q}q \rangle)^{1/3}$ [MeV]	274(6)
m _{u,d} [MeV]	3.37(23)
<i>r</i> ₀ [fm]	0.433(14)

 B_0 , $\langle \bar{q}q \rangle$ and $m_{u,d}$ are given in $\overline{\mathrm{MS}}$ at 2 GeV

To constrain further the determination of the LEC : more data points or include in the fit other observables ...

electromagnetic form factor of the pion

[Frezzotti, Lubicz, Simula, 2008]

 $\langle \pi^+(p') | \widehat{V}_{\mu} | \pi^+(p) \rangle = F_{\pi}(q^2) (p + p')_{\mu} ; \quad \text{where } q^2 = (p - p')^2$

Chiral Dynamics, Bern, 06.07.09 G. H

a = 0.085 fm

LEC	NNLO	non-lattice
\widehat{B}_0 (GeV)	$2.45 \pm 0.03 \pm 0.10$	_
<i>f</i> ₀ (MeV)	$122.5 \pm 0.5 \pm 1.0$	_
$\bar{\ell}_1$	$-0.4 \pm 0.7 \pm 0.6$	-0.4 ± 0.6
$\bar{\ell}_2$	$4.3\pm0.6\pm0.4$	4.3 ± 0.1
$\bar{\ell}_3$	$3.2\pm0.4\pm0.2$	2.9 ± 2.4
$\bar{\ell}_4$	$4.4\pm0.1\pm0.1$	4.4 ± 0.2
$\bar{\ell}_6$	$14.9\pm0.6\pm0.7$	$16.0\pm0.5\pm0.7$
$r_M^r \cdot 10^4$	$-0.45 \pm 0.16 \pm 0.10$	_
$r_F^r \cdot 10^4$	$0.08 \pm 0.08 \pm 0.05$	-
$r_1^r \cdot 10^4$	$-0.94 \pm 0.07 \pm 0.10$	-2.0
$r_{2}^{r} \cdot 10^{4}$	$0.46 \pm 0.02 \pm 0.31$	2.1

• agreement with χ PT fit of m_{PS} and f_{PS} using $a = \{0.055, 0.065, 0.085\}$ fm data.

- pion charge radius: $\langle r^2 \rangle = 0.456 \pm 0.030 \pm 0.024 \text{ fm}^2$
- experimental result: $\langle r^2 \rangle^{exp.} = 0.452 \pm 0.011 \text{ fm}^2$

strange-quark sector : $f_{PS}(\mu_l, \mu_l, \mu_s)$ vs. m_{PS}^2

- $ightarrow N_{\rm f}=2$ ightarrow the strange quark is quenched : use of Partially Quenched PQ χ PT
- lattice spacing : $a \sim 0.065, 0.085, 0.100$ fm

Chiral Dynamics, Bern, 06.07.09

strange-quark sector : f_K/f_{π}

$$f_{K} = 158.1 \pm 0.8 \pm 2.0 \pm 1.1 \text{ MeV}$$

$$f_{K}/f_{\pi} = 1.210(6)(15)(9)$$

$$|V_{us}|/|V_{ud}| = 0.2281(5)(35)$$

$$|V_{us}|^{2} + |V_{ub}|^{2} + |V_{ub}|^{2} - 1 = -0.00146(160)$$

K_{P2} decay

Flavianet (Kaon WG global fit, 2008) :

$$\begin{split} |V_{us}| / |V_{ud}| &= 0.2313(9) \\ |V_{us}| &= 0.2253(9) \\ |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.00023(70) \end{split}$$

$N_{\rm f} = 2 + 1 + 1$

u, d, s, c sea quarks

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

ETMC results in the light-quark sector

$N_{\rm f} = 2 + 1 + 1$

- test QCD in realistic conditions
- repeat physical conditions of $N_{\rm f} = 2$ simulations
- setup
 - \triangleright N_f = 2 + 1 + 1 twisted mass
 - automatic O(a) improvement [Frezzotti, Rossi, 2003]
 - non-degenerate quark masses :

$$m_{c,s} = 1/Z_{\rm P} \, \mu_{\sigma} \pm 1/Z_{\rm s} \, \mu_{\delta}$$

Iwasaki gauge action

$N_{\rm f} = 2 + 1 + 1$ ensembles

	$\beta = \frac{6}{g_0^2}$	V/a^4	$a\mu_l$	$a\mu_{\sigma}$	$a\mu_{\delta}$
	1.90	$32^{3} \cdot 64$	0.0030	0.150	0.190
Range of masses:			0.0040		
$m_{\pi} \in [270; 600]$ MeV			0.0050		
$m_{\prime\prime} \sim m^{\exp}$		$24^3 \cdot 48$	0.0040		
m _K - m _K			0.0060		
$m_c \gtrsim 10 m_s$			0.0080		
			0.0100		
$\mathbf{b} = \alpha \beta = 1.90$		$20^{3} \cdot 48$	0.0040		
$\beta = 1.70$		24 ³ · 48	0.0100	0.150	0.197
$a \approx 0.085 \text{ fm}$	1.95	$32^3 \cdot 64$	0.0025	0.135	0.170
$m_{ m PS} imes L \gtrsim 3.5$			0.0035		
$L \approx 2.0$ and 2.7 fm			0.0055		
			0.0000		
Encomplex at two finar lattice		$24^3 \cdot 48$	0.0070		
		24 40	0.0000		
spacings are being generated	stout 1.90	$24^{3} \cdot 48$	0.0040	0.170	0.185
			0.0060		
			0.0080		

scaling to the continuum limit of $f_{\rm PS}$ and $m_{\rm N}$

a = 0.078, 0.085 fm

pion decay constant and nucleon mass

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

scaling to the continuum limit of $f_{\rm PS}$ and $m_{\rm N}$

a = 0.078, 0.085 fm

pion decay constant and nucleon mass

Chiral Dynamics, Bern, 06.07.09

G. Herdoiza

Conclusions

Summary :

- confront lattice QCD data to χ PT : mass and volume dependence
- extraction of LEC, m_q and $\langle \bar{q}q \rangle$ with good statistical precision
- control of systematic errors

Other results from ETMC :

- meson and baryon spectrum
- $\blacktriangleright f_{\rm D}, f_{\rm D_s}, B_{\rm K}, \ldots$
- ▶ pion scattering lengths, ρ decay, K, D meson weak decays, PDF, ...
- $N_{\rm f} = 2 + 1 + 1$: SU(2) and SU(3) χ PT