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Antiferromagnetic precursors of high-Tc superconductors

LaCuO YBaCuO
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Phase diagrams of QCD and of doped antiferromagnets
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Correspondences between QCD and Antiferromagnetism
QCD Antiferromagnetism

broken phase hadronic vacuum antiferromagnetic phase
global symmetry chiral symmetry spin rotations

symmetry group G SU(2)L ⊗ SU(2)R SU(2)s

unbroken subgroup H SU(2)L=R U(1)s

Goldstone boson pion magnon
Goldstone field in G/H U(x) ∈ SU(2) ~e(x) ∈ S2

order parameter chiral condensate staggered magnetization
coupling strength pion decay constant Fπ spin stiffness ρs

propagation speed velocity of light spin-wave velocity c
conserved charge baryon number U(1)B electric charge U(1)Q

charged particle nucleon or antinucleon electron or hole
long-range force pion exchange magnon exchange

dense phase nuclear or quark matter high-Tc superconductor
microscopic description lattice QCD Hubbard or t-J model

effective description chiral perturbation magnon effective
of Goldstone bosons theory theory
effective description baryon chiral magnon-hole

of charged fields perturbation theory effective theory
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Effective magnon field in SU(2)/U(1) = S2

~e(x) = (e1(x), e2(x), e3(x)), ~e(x)2 = 1

Low-energy effective action for antiferromagnetic magnons

S [~e] =

∫
d2x dt

ρs

2

(
∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e

)
Neuberger, Ziemann (1989); Hasenfratz, Leutwyler (1990);
Hasenfratz, Niedermayer (1993)

Low-energy effective action for ferromagnetic magnons

S [~e] =

∫
d2x

[∫
S1

dt
ρs

2
∂i~e · ∂i~e − im

∫
H2

dtdτ ~e · (∂t~e × ∂τ~e)

]
The prefactor of the Wess-Zumino term — the total spin
M =

∫
d2x m, i.e. the magnetization of the ferromagnet —

is quantized in half-integer units.

Leutwyler (1994); Hofmann (1999); Bär, Imboden, Wiese (2004)
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The spin 1/2 quantum Heisenberg model

Quantum spins [Sa
x , S

b
y ] = iδxyεabcS

c
x and their Hamiltonian

H = J
∑
〈xy〉

~Sx · ~Sy

Partition function at inverse temperature β = 1/T

Z = Tr exp(−βH)



Spin chain with periodic boundary conditions



Excellent agreement of Monte Carlo simulations with effective
field theory predictions for the constraint effective potential
Göckeler, Leutwyler (1991)
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Very accurate determination of low-energy parameters:

Ms = 0.30743(1)/a2, ρs = 0.1808(4)J, c = 1.6585(10)Ja

Gerber, Hofmann, Jiang, Nyfeler, Wiese (2009)



Fit to ε-regime predictions of magnon chiral perturbation
theory for the Heisenberg model on a honeycomb lattice

χs =
M2

sL
2β

3

{
1 + 2

c

ρsLl
β1(l) +

(
c

ρsLl

)2 [
β1(l)2 + 3β2(l)

]}

χu =
2ρs

3c2

{
1 +

1

3

c

ρsLl
β̃1(l) +

1

3

(
c

ρsLl

)2 [
β̃2(l)− 1

3
β̃1(l)2 − 6ψ(l)

]}
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M̃s = 0.2689(4), ρs = 0.102(2)J, c = 1.297(16)Ja

Hasenfratz, Niedermayer (1993); Jiang, Kämpfer, Nyfeler, Wiese (2008)



Effective quantum mechanical rotor in the δ-regime

L =

∫
d2x

ρs

2

(
∂i~e · ∂i~e +

1

c2
∂t~e · ∂t~e

)
=

Θ

2
∂t~e · ∂t~e

Probability distribution of magnetization M3 = S3

p(M3) =
1

Z

∑
S≥|M3|

exp(−βES), ES =
S(S + 1)

2Θ
, Θ =

ρsL
2

2c2

β

L

L

-4 -2 0 2 4

M
3

1×10
-3

1×10
-2

1×10
-1

1×10
0

1×10
1

p(
M

3 )

Honeycomb Lattice, 836 Spins, βJ = 60  

Sz = 0: 0.5444

Sz = 1: 0.1909

Sz = 2: 0.0338

Sz = 3: 0.00283

Sz = 0: 0.5445(9)

Sz = 1: 0.1912(5)

Sz = 2: 0.0336(3)
Sz = 3: 0.00279(6)

Perfect agreement without additional adjustable parameters
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The Hubbard Model

H = −t
∑
〈xy〉

(c†xcy + c†ycx) + U
∑
x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)
For large repulsion U it reduces to the t-J model

H = P

{
− t

∑
〈xy〉

(c†xcy + c†ycx) + J
∑
〈xy〉

~Sx · ~Sy

}
P

which further reduces to the Heisenberg model at half-filling

H = J
∑
〈xy〉

~Sx · ~Sy
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Hole dispersion in the t-J model

p1

p2
π
a

π
a

-π -π /2
 0

π /2
π

-π
-π /2

 0

π /2

π

Hole pockets centered at lattice momenta

kα =
( π

2a
,
π

2a

)
, kα′ = −kα, kβ =

( π
2a
,− π

2a

)
, kβ

′
= −kβ

Hole fields

ψf
+(x) =

1√
2

[
ψk f

+ (x)−ψk f ′

+ (x)
]
, ψf

−(x) =
1√
2

[
ψk f

− (x)+ψk f ′

− (x)
]
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Nonlinear realization of the SU(2)s symmetry

u(x)~e(x) · ~σu(x)† = σ3, u11(x) ≥ 0

Under SU(2)s the diagonalizing field u(x) transforms as

u(x)′ = h(x)u(x)g †, u11(x)′ ≥ 0,

h(x) = exp(iα(x)σ3) =

(
exp(iα(x)) 0

0 exp(−iα(x))

)
∈ U(1)s

The composite vector field

vµ(x) = u(x)∂µu(x)† = iva
µ(x)σa, v±µ (x) = v1

µ(x)∓ iv2
µ(x)

transforms as

v3
µ(x)′ = v3

µ(x)− ∂µα(x), v±µ (x)′ = exp(±2iα(x))v±µ (x)



Transformation rules of fermion fields

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x),

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x),

Di : Diψf
±(x) = ∓ exp(ik f

i a) exp(∓iϕ(x))ψf
∓(x),

O : Oψα±(x) = ∓ψβ±(Ox), Oψβ±(x) = ψα±(Ox),

R : Rψα±(x) = ψβ±(Rx), Rψβ±(x) = ψα±(Rx)

Leading terms in the effective Lagrangian for holes

L =
∑
f =α,β
s=+,−

[
Mψf †

s ψ
f
s + ψf †

s Dtψ
f
s + Λ

(
ψf †

s v s
1ψ

f
−s + σf ψ

f †
s v s

2ψ
f
−s

)
+

1

2M ′
Diψ

f †
s Diψ

f
s + σf

1

2M ′′
(
D1ψ

f †
s D2ψ

f
s + D2ψ

f †
s D1ψ

f
s

)]
Covariant derivative coupling to composite magnon gauge field

Dµψ
f
±(x) =

[
∂µ ± iv3

µ(x)
]
ψf
±(x)

Brügger, Kämpfer, Moser, Pepe, Wiese (2006)
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Magnon exchange

f+

f̃−

f−

f̃+

~p+

~q

~p
′
−

~p− ~p
′
+

One-magnon exchange potentials

V αα(~r) = γ
sin(2ϕ)

r2
, V ββ(~r) = −γ sin(2ϕ)

r2
,

V αβ(~r) = V βα(~r) = γ
cos(2ϕ)

r2
, γ =

Λ2

2πρs



Two-hole Schrödinger equation for an αβ pair( − 1
M′∆ V αβ(~r)

V αβ(~r) − 1
M′∆

)(
Ψ1(~r)
Ψ2(~r)

)
= E

(
Ψ1(~r)
Ψ2(~r)

)
Making the ansatz

Ψ1(~r)±Ψ2(~r) = R(r)χ±(ϕ)

for the angular part of the wave function one obtains

−d2χ±(ϕ)

dϕ2
±M ′γ cos(2ϕ)χ±(ϕ) = −λχ±(ϕ)

-3 -2 -1 0 1 2 3
j

-1

-0.5

0

0.5

1

looks like s-wave,
but turns out to be p-wave



Two-hole bound states of αβ and αα pairs
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Effective Lagrange function for quantum mechanical rotor

L =
Θ

2
∂t~e·∂t~e+

∑
f =α,β

Ψf † [E (~p)− i∂t + v3
t σ3

]
Ψf ,Ψ(t) =

(
ψf

+(t)
ψf
−(t)

)

Spherical coordinates for the staggered magnetization

~e = (sin θ cosϕ, sin θ sinϕ, cos θ) ⇒ v3
t = sin2 θ

2
∂tϕ

Canonically conjugate momenta

Θ ∂tθ = pθ, Θ ∂tϕ =
1

sin2 θ
(pϕ + iAϕ)

Abelian monopole Berry gauge field

Aθ = 0, Aϕ = i sin2 θ

2
σ3, Fθϕ = ∂θAϕ − ∂ϕAθ =

i

2
sin θ σ3



Rotor Hamiltonian in the single-hole sector

H = − 1

2Θ

{
1

sin θ
∂θ[ sin θ∂θ] +

1

sin2 θ
(∂ϕ − Aϕ)2

}
+ E (~p)

=
1

2Θ

(
~J 2 − 1

4

)
+ E (~p)

Angular momentum operators

J± = exp(±iϕ)

(
± ∂θ + i cot θ ∂ϕ − 1

2
tan

θ

2
σ3

)
, J3 = −i∂ϕ−σ3

2

Energy spectrum

Ej =
1

2Θ

[
j(j + 1)− 1

4

]
+ E (~p), j ∈ {1

2
,

3

2
,

5

2
, ...}

Wave functions are monopole harmonics

Y±1
2
,± 1

2

(θ, ϕ) =
1√
2π

sin
θ

2
exp(±iϕ), Y±1

2
,∓ 1

2

(θ, ϕ) =
1√
2π

cos
θ

2



Rotor spectrum in the single-nucleon sector (Λ = gA|~p|/M)

Ej =
1

2Θ

[
j ′(j ′ + 2) +

Λ2 − 1

2

]
+ E (~p), j ′ = j ± Λ

2

-3 -2 -1 0 1 2 3
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Leutwyler (1987); Chandrasekharan, Jiang, Pepe, Wiese (2008)
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Conclusions

• There are intriguing analogies between antiferromagnets and QCD.

• Doped antiferromagnets are described quantitatively by a systematic
low-energy effective field theory analogous to chiral perturbation theory.

• Magnon exchange binds hole pairs in analogy to the deuteron.

• Spirals phases are analogous to pion condensation in nuclear matter.

• Systems on the honeycomb lattice as well as electron-doped systems
have been investigated with the same techniques.

• Fermions have characteristic effects on the rotor spectrum, caused by
Abelian or non-Abelian monopole Berry gauge fields.

• The rotor problem tests the effective theory nonperturbatively.

• Perturbative matching of Λ to the infinite volume effective theory is

necessary before gA could be extracted from the rotor level splitting.
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