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Motivation

- Successful derivation of nuclear potentials using method of unitary
transformation & chiral perturbation theory in recent
yearsEpelbaum et al. ’98

- Consistent derivation of electromagnetic-current Jµ

ψf ψi

+ +

...

+

- Treat em-interaction as
perturbation

- Convolute between wave-
functions.

- Define effective current with unitary transformation
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,

with projectors η (λ) on the purely nucleonic (rest) subspace.
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Additional transformations

- Expand A and J in chiral power-counting and compute J order by
order.

- Renormalizability on the level of the 3N-Hamiltonian → additional
transformation U ′Epelbaum ’07

- In general, further unitary transformations are possible

U†(Aµ)HπNγU(Aµ),

- With U(Aµ) s.t. transformed Hamiltonian is block-diagonal (in η

(λ) spaces)

- For Aµ → 0, U(Aµ) → 1
- We calculate the leading-loop order of the one-pion exchange

current

- Check renormalizability
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Additional transformations Ctd.

- These diagrams visualize the the
topology, different meaning than in
covariant/time-ordered
perturbation theory.

- Nontrivial check, since β-functions were computed in a different
formalism.

- For example, for the diagrams above
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with β21 fromGasser et al. ’02.

- Additional unitary transformations are needed to restore
renormalizability.

- However, this transformation does not lead to any changes in
two-pion exchange sector.
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Two-Pion exchange currents

Class 1:

Class 2:

Class 3:

Class 4:

Class 7:

Class 5:

Class 6:
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Two-Pion exchange currents in configuration-space
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~J4 (~r10,~r20) = ~Jc6 (~r10,~r20) = 0 ,

with ~r1/2/0 the positions of the first/second nucleon/the photon, and ~x10 = Mπ (~r1 −~r0), ~x20 = Mπ (~r2 −~r0),

~x12 = Mπ (~r1 −~r2) and ~∇ij ≡ ∂/∂xij and xij ≡ |~xij |.
All derivatives have to be evaluated as if the variables were independent.
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Two-Pion exchange currents in configuration-space Ctd.

ρc1 (~r10,~r20) = ρc2 (~r10,~r20) = ρc3 (~r10,~r20) = 0 ,
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- Results also available in momentum-space, expressed in standard
loop-function L(q), A(q) and three-point functions.

- Can be easily treated numerically.

- Continuity-equation is fulfilled → Current is consistent with
potential obtained within the method of unitary transformation
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Conclusion and outlook

Conclusion

- We derived the long-range part of the em-current and charge-density in
the method of unitary transformation at leading loop-order.

- An explicit check of renormalizability of the one-pion exchange
contributions was performed.

- Expressions are given in momentum-space in terms of loop-functions
L(q), A(q) and three-point functions.

- We analytically carried out the Fourier-transform to arrive at very
compact expressions in configuration-space.

- The current fulfills the continuity-equation, i.e. is consistent with the
potential.

- We checked with the corrected results of Pastore et al. ’09.

Outlook

- Full treatment of short-range effects.

- Inclusion of ∆-degrees of freedom.

- Going to the sub-leading loop-order.

- ...


	Motivation
	Additional transformation
	Two-Pion exchange
	Conclusion and Outlook

