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Motivation

Motivation

- Successful derivation of nuclear potentials using method of unitary
transformation & chiral perturbation theory in recent
years

- Consistent derivation of electromagnetic-current J#

€ <> u) - Treat em-interaction as
23 perturbation

- ; - Convolute between wave-

S A functions.

- Define effective current with unitary transformation
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with projectors i (A) on the purely nucleonic (rest) subspace.



Additional transformation

Additional transformations

- Expand A and J in chiral power-counting and compute J order by
order.

- Renormalizability on the level of the 3N-Hamiltonian — additional
transformation U’

- In general, further unitary transformations are possible

UT(A")Hon, U(AM),
- With U(A*) s.t. transformed Hamiltonian is block-diagonal (in n
(\) spaces)
- For A -0, U(A*") — 1

- We calculate the leading-loop order of the one-pion exchange
current

- Check renormalizability



Additional transformation

Additional transformations Ctd.

- These diagrams visualize the the
o e’ ‘v’ topology, different meaning than in
covariant/time-ordered
w w ! perturbation theory.

- Nontrivial check, since 5-functions were computed in a different

formalism.
- For example, for the diagrams above
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with 821 from
- Additional unitary transformations are needed to restore
renormalizability.

- However, this transformation does not lead to any changes in
two-pion exchange sector.



Two-Pion exchange

Two-Pion exchange currents
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Two-Pion exchange

Two-Pion exchange currents in configuration-space
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with 7 /5 /¢ the positions of the first/second nucleon/the photon, and X190 = Mx (71 — ), %0 = Mz (2 — 1),

X2 = Mz (4 — 2) and V; = 8/9x;; and x;; = [X;].
All derivatives have to be evaluated as if the variables were independent.



Two-Pion exchange

Two-Pion exchange currents in configuration-space Ctd.
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- Results also available in momentum-space, expressed in standard
loop-function L(q), A(q) and three-point functions.

- Can be easily treated numerically.

- Continuity-equation is fulfilled — Current is consistent with
potential obtained within the method of unitary transformation



Conclusion and Outlook

Conclusion and outlook

Conclusion

- We derived the long-range part of the em-current and charge-density in
the method of unitary transformation at leading loop-order.

- An explicit check of renormalizability of the one-pion exchange
contributions was performed.

- Expressions are given in momentum-space in terms of loop-functions
L(q), A(q) and three-point functions.

- We analytically carried out the Fourier-transform to arrive at very
compact expressions in configuration-space.

- The current fulfills the continuity-equation, i.e. is consistent with the
potential.

- We checked with the corrected results of Pastore et al. '09.
Outlook

- Full treatment of short-range effects.

- Inclusion of A-degrees of freedom.

- Going to the sub-leading loop-order.
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