Pion Physics on the lattice

Sinya AOKI University of Tsukuba

6th International Workshop on Chiral Dynamics University of Bern, Switzerland, July 6-10, 2009

Content

- 1. Recent full QCD simulations
- 2. Pion mass/decay constant and ChPT

(1) 2-flavor QCD and ChPT

(2) 2+1 flavor QCD and ChPT

- 3. Others
 - (1) Pion form factors

(2) epsilon-regime -----> S. Hashimoto's talk

(3) S-parameter

(4) topological susceptibility (from fixed topology)

4. Summary

No new results for pi-pi scattering.

Talk by A. Walker-Loud (July 7,17:30@WG3)

Recent Review: S. Necco@Confinement'08, arXiv:0901.4257

1. Recent full QCD simulations

Full QCD simulations near the physical quark mass becomes possible.

by improvements for both computers and algorithms

Systematic errors in lattice QCD

- finite size L
 - corrected by ChPT?
- finite lattice spacing a
- heavier u,d quark mass
 - chiral extrapolation is needed. ChPT?

(incomplete) lists of full QCD simulations

Group	flavors	a(fm)	L(fm)	$m_{\pi}^{\min.}$ (MeV)	
PACS-CS	2+1	0.09	2.9	160	
MILC	2+1	>0.06	3.3	240	
BMW	2+1	>0.065	>4.2	190	
JLab	2+1	0.12	1.5~2.9	385	
CERN-ToV	2	>0.05	1.7~ 1.9	300	
ETMC	2	>0.07	2.1	300	
CLS	2	>0.06	2.5	260	
QCDSF	2	>0.072	1.7~3.2	240	
RBC-UKQCD	2+1	0.11	2.8	330	
JLQCD	2+1	0.11	1.8	315	
RBC	2	0.12	2.5	490	
JLQCD	2	0.12	1.9	290	

conventional quark action (Wilson/KS)

chirally symmetric quark action (Overlap/DW)

Hadron spectra

Science 322(2008)1224.

 $a \to 0$ $m_{\pi}^{\min} = 190 \text{ MeV}$

 $m_{\pi}L \ge 4$

Agreement between Lattice QCD and experiment is excellent !

PACS-CS Collaboration

Phys. Rev. D79(2009)034503.

a = 0.09 fm L = 2.9 fm $m_{\pi}L = 2.3$ $m_{\pi}^{\min} = 156 \text{ MeV}$

We are almost on the "physical point".

$$m_{\pi}L > 4$$

Calculations with L=5.8 fm and $m_{\pi} \simeq 140 \ {\rm MeV}$ are on-going. "Real QCD" 2. Pion mass and decay constant

2-1. Nf=2 and Chiral Perturbation Theory

SU(2) ChPT formula

 $f_{\pi} = 132 \text{ MeV}$

$$\frac{\text{LO}}{m_q} \frac{\text{NLO}}{m_q} = 2B \left\{ 1 + \frac{2Bm_q}{16\pi^2 f^2} \left[\ln\left(\frac{2Bm_q}{\mu^2}\right) - l_3(\mu) \right] \right\}$$

$$LO \qquad NLO \qquad \log \qquad LOC$$

$$f_{\pi} = f \left\{ 1 - \frac{2Bm_q}{8\pi^2 f^2} \left[\ln \left(\frac{2Bm_q}{\mu^2} \right) - l_4(\mu) \right] \right\}$$

Gasser-Leutwyler, 1984

JLQCD/TWQCD Collaborations

Noaki, et al., Phys.Rev.Lett. 101(2008)202004.

- Ovelap fermion (exact "chiral" symmetry), a=0.12fm
- fixed topology
 - 1/V correction by ChPT ← ____ destructive
- $m_{\pi} \ge 290 \text{ MeV}, \ m_{\pi}L \ge 2.9$
 - finite volume correction by ChPT (NLO LOCs are required)

Colangero-Dürr-Haefeli'05

NLO Fits

$$\frac{m_{\pi}^2}{m_q} = 2B\left[1 + \frac{1}{2}x\ln x\right] + c_3x$$

$$f_{\pi} = f[1 - x\ln x] + c_4 x$$

choices of expansion parameter

$$\hat{x} \equiv \frac{m_{\pi}^2}{8\pi^2 f^2} \qquad \xi \equiv \frac{m_{\pi}^2}{8\pi^2 f_{\pi}^2}$$

- NLO fits work for the lightest 3 data.
 - all 3 choices
 - establish the validity of NLO ChPT fits
- Xi-fit describes data beyond the fitted region.

Fit is reasonable, but c3 and c4 are different from NLO values, and

$$\frac{|\text{NNLO}-\text{NLO}|}{|\text{NLO}-\text{LO}|} = 0.3(m_{\pi}) \text{ or } 0.7(f_{\pi}) \text{ at } m_{\pi} = 500 \text{ MeV}$$

Determination of LOCs

Variations of some LOCs from NLO to NNLO are significant.

European Twisted Mass Collaborations

Boucaud, *et al.*, Phys.Lett. B650(2007)304 Boucaud, *et al.*,arXiv:0810.2873[hep-lat] C. Urbach, arXiv:0710.1517[hep-lat]

Talk by G. Herdoizo (July 6,14:40@WG1)

- twisted mass QCD $L_{\rm tm}^{\rm cont.} = m_q \bar{q} e^{i\theta\gamma_5\tau_3} q$, $q = \begin{pmatrix} u \\ d \end{pmatrix}$
 - $\theta = \pi/2$ (maximal twist) \longrightarrow O(a) lattice artifact is absent.
- a=0.087, 0.067 fm, L=2.1 fm $m_{\pi} \ge 310 \text{ MeV}, m_{\pi}L \ge 3.3 (4.3)$
 - finite volume correction by ChPT(GL, CDH)
 Gasser-Luetwyler'87

$$R_{O} = \frac{O(L) - O(\infty)}{O(\infty)} = c_{O}\xi \tilde{g}_{1}(\lambda), \quad \xi = \frac{m_{\pi}^{LO}}{(4\pi f)^{2}}, \ \lambda = m_{\pi}^{LO}L$$
$$\tilde{g}_{1}(x) = \sum_{n=1}^{\infty} \frac{4m(n)}{\sqrt{n}x} K_{1}(\sqrt{n}x) \qquad c_{m_{\pi}} = \frac{1}{N_{f}}, \ c_{f_{\pi}} = -N_{f}$$

NLO Fits

a=0.087 fm, with finite volume correction

(aµ)

Boucaud, et al., Phys.Lett. B650(200)304

NLO fits work at 500 MeV or below.

Boucaud, et al., arXiv:0810.2873[hep-lat]

NNLO vs. NLO

a=0.087, 0.067 fm, with finite volume correction

variation is significant

	$\Sigma^{1/3}$	$\int f$	l_3	l_4
NLO	267(2)	121.7(1)	3.42(8)	4.59(4)
NNLO	263(2)	121.7(3)	3.15(9)	4.72(12)

CERN-TorVergata

Del Debbio, et al., JHEP 02(2007)056

• (O(a)-improved) Wilson, a= 0.052,0.072,0.078 fm

Summary: Nf=2 QCD and SU(2) ChPT

- Now NLO ChPT works at $m_{\pi} \leq 500 \; {
 m MeV}$
 - "Chiral-log" is unambiguously observed on the lattice.(first time).
 - NNLO may describe data beyond that region.
 - some LOCs are fixed to phenomenological values.
 - NNLO corrections seem large, in particular for f_{π}
 - some NLO LOCs are significantly affected.
- **Future** Finite size correction: ChPT formula should be checked by Lattice
 - NNLO fits without using phenomenological inputs.
 - simultaneous fits to various quantities are needed.
 - Finite Size correction should be also included.
 - inclusion of the lattice artifact in ChPT(Wilson, tmQCD, KS)

Finite size correction

ETMC, C. Urbach, arXiv:0710.1517[hep-lat]

The resummed Lüscher formula is roughly consistent with lattice data, but more detailed studies are needed for definite conclusions.

2-2. Nf=2+1 QCD and ChPT

Problem of Nf=2+1 QCD

- K meson mass is too heavy for NLO ChPT to work?
 - SU(2) vs. SU(3) ChPT

$$\begin{aligned} \mathsf{SU(3)} \quad \frac{m_{\pi}^2}{m_l} &= 2B_0 \left\{ 1 + \mu_{\pi} - \frac{1}{3}\mu_{\eta} + \frac{2B_0}{f_0^2} \left(16m_l(2L_8 - L_5) + 16(2m_l + m_s)(2L_6 - L_4) \right) \right\} \\ f_{\pi} &= f_0 \left\{ 1 - 2\mu_{\pi} - \mu_K + \frac{2B_0}{f_0^2} \left(8m_lL_5 + 8(2m_l + m_s)L_4 \right) \right\} \\ \mu_{\mathrm{PS}} &= \frac{\tilde{m}_{\mathrm{PS}}^2}{16\pi^2 f_0^2} \ln \left(\frac{\tilde{m}_{\mathrm{PS}}^2}{\mu^2} \right) \\ \tilde{m}_{\pi}^2 &= 2m_l B_0, \ \tilde{m}_K^2 = (m_l + m_s)B_0, \ \tilde{m}_{\eta}^2 = \frac{2}{3}(m_l + 2m_s)B_0 \\ \end{aligned} \\ \begin{aligned} \mathsf{SU(2)} \quad \frac{m_{\pi}^2}{m_q} &= 2B \left\{ 1 + \frac{2Bm_q}{16\pi^2 f^2} \left[\ln \left(\frac{2Bm_q}{\mu^2} \right) - l_3(\mu) \right] \right\} \\ f_{\pi} &= f \left\{ 1 - \frac{2Bm_q}{8\pi^2 f^2} \left[\ln \left(\frac{2Bm_q}{\mu^2} \right) - l_4(\mu) \right] \right\} \\ B, \ f, \ l_{3,4} \colon m_s \text{ dependent} \end{aligned}$$

PACS-CS Collaboration

Aoki *et al.,* Phys. Rev. D79(2009)034503. Kadoh *et al.,* arXiv:0810.0351[hep-lat] Y. Kuramashi, arXiv: 0811.2630[hep-lat]

- O(a) improved Wilson, a=0.9 fm, L=2.9 fm $m_{\pi} \ge 160 \text{ MeV}, m_{\pi}L \ge 2.3$
- perturbative renormalization
- Wilson ChPT +O(a) improvement ---> continuum ChPT at NLO

 $\chi^2/dof(SU(3)) \simeq 4$ $\chi^2/dof(SU(2)) \simeq 0.4$

NLO/LO(SU(3)) > NLO/LO(SU(2))

SU(2) ChPT works much better than SU(3) ChPT at NLO

RBC-UKQCD Collaborations

• a=0.11 fm, L=2.7 fm / a=0.08 fm, L=2.6 fm

 $m_{\pi} \ge 330 \text{ MeV}, \ m_{\pi}L \ge 4.6 \ / \ m_{\pi} \ge 310 \text{ MeV}, \ m_{\pi}L \ge 4.1$

• Domain-Wall quarks (almost "chiral") $m_{res}a = 0.003 / 0.0007$

additive mass renormalization

New

- DW-ChPT \longrightarrow continuum ChPT at NLO with $\tilde{m}_f = m_f + m_{res}$
 - SU(2) / SU(3) Partially Quenched ChPT at NLO
- one strange quark mass

SU(2) vs. SU(3)

NLO SU(3) PQChPT works only at $m_x + m_y \le 0.02$ $\chi^2/{ m dof} \simeq 0.7$ This can not cover $m_s = 0.04$

NLO correction : 30-40% for SU(2) 60-70% for SU(3)

NLO SU(2) PQChPT behaves better than SU(3).

NLO SU(3) ChPT is not sufficient for the strange quark.

results at a=0.08 fm

NLO SU(2) ChPT is consistent with NLO SU(2) PQChPT.

 $m_x + m_y \le 0.016$

MILC Collaborations

Aubin *et al.*, Phys. Rev. D70(2004)114501. Bernard *et al.*, arXiv: 0710.1118[hep-lat]

• a=0.06,0.09,0.12,0.15 fm, L > 2.4 fm

$$m_{\pi}L \ge 3.4$$

- rooted staggered quarks
- rooted staggered SU(3) PQChPT fits(includes lattice artifacts)

 $m_x + m_y \le (0.39 \sim 0.56) m_s$

• need NNLO analytic terms to fit data

failure of NLO SU(3) PQChPT ?
need NLO SU(2) fits?

Talk by U. Heller (July 6,15:05@WG1)

Latest analysis

Talk by U. Heller (July 6,15:05@WG1)

NLO rooted staggered PQChPT+ NNLO continuum PQChPT

SU(2) fit dynamical $m_s \simeq m_s^{\text{phys.}}$

dynamical $m_s \leq 0.6 m_s^{\text{phys.}}$ valence: $m_x + m_y \leq 0.6 \text{ m}_s^{\text{phys.}}$ dyn. s (dyn. ud) f_{π} 0.18 $\begin{array}{c} \times \times \text{ fine, } & \text{am}_{\text{g}}' = 0.0186 \ (\text{m}_{u,d}' = 0.0062, 0.0031) \\ \times & \text{ fine, } & \text{am}_{\text{g}}' = 0.0031 \ (\text{m}_{u,d}' = 0.0031) \\ + & \text{ superfine, } & \text{am}_{\text{g}}' = 0.0108 \ (\text{m}_{u,d}' = 0.0036) \end{array}$ $\chi^2/dof = 72/77$ CL = 0.690.17 $(f_{\pi} r_1)/\sqrt{2}$ 0.16 $m_x + m_y = 0.6 m_a^{phy}$ 0.15 full, cont., 0.6m + extrap 0.14 0.00 0.02 0.06 0.04 $(m_x+m_y)r_1 \times (Z_m/Z_m^{fine})$

SU(3) fit

valence quark

Summary: Nf=2+1 QCD and ChPT

- NLO SU(3) (PQ)ChPT seems to fail at strange quark mass
- NLO SU(2) (PQ)ChPT seems to work at $m_{\pi} \leq 500 \,\, {
 m MeV}$
 - strange quark mass dependence needed to be interpolated.
 - SU(2) LOCs may be extracted.
- Nf=3 QCD simulation may be required to determine SU(3) LOCs Talk by U. Heller (July 6,15:05@WG1)
 - NLO SU(3) (PQ)ChPT at $m_{\pi} \leq 500 \,\,\mathrm{MeV}$
 - exact "chiral" symmetry is preferable.

3. Others

3-1. Pion Form Factors

Vector From Factor

$$\begin{split} \langle \pi(p')|V_{\mu}|\pi(p)\rangle &= (p+p')_{\mu}F_{V}(q^{2}), \ q^{2} = (p-p')^{2} \\ \langle r^{2}\rangle_{V} &= 6\frac{\partial F_{V}(q^{2})}{\partial q^{2}}\Big|_{q^{2}=0} \quad \text{charge radius} \\ c_{V} &= \frac{\partial^{2}F_{V}(q^{2})}{\partial (q^{2})^{2}}\Big|_{q^{2}=0} \quad \text{curvature} \end{split}$$

Scalar From Factor

$$\langle \pi(p')|S|\pi(p)\rangle = F_S(q^2)$$

$$\langle r^2 \rangle_S = 6 \frac{\partial F_S(q^2)}{\partial q^2} \Big|_{q^2 = 0}$$

scalar radius

Recent full QCD calculations

 $Q^2 = -q^2$

QCDSF-UKQCD, Eur. Phys. J. C51(2007)335. RBC-UKQCD, JHEP07(2008)112. ETMC, arXiv:0812.4042[hep-lat]. JLQCD-TWQCD, arXiv:0905.2465[hep-lat]

		quarks	a(fm)	L(fm)	$egin{array}{l} Q^2_{ m min} \ ({ m GeV}^2) \end{array}$	$egin{array}{l} Q^2_{ m max} \ ({ m GeV}^2) \end{array}$	m_{π} (MeV)	F_X
QCDSF- UKQCD	2	O(a) Wilson	0.07~ 0.12	1.4~ 2.0	0.31	4.3	400~ 1011	V
RBC- UKQCD	2+1	Domain Wall	0.11	2.8	0.013	0.258	330	V
ETMC	2	twisted mass	0.07~ 0.09	2.2~ 2.9	0.05	0.8	260~ 580	V
JLQCD- TWQCD	2	Overlap	0.12	1.9	0.252	1.7	290~ 750	V,S

ETMC: Talk by A. Juettner (July 6,16:40@WG1) JLQCD-TWQCD: Talk by T. Kaneko (July 6, 17:05@WG1)

q^2 dependence of F_V

NLO ChPT and a problem

A single pole ansatz works rather well in all lattice simulations at small q^2

$$\langle r^2 \rangle_V \simeq \frac{6}{M_{\text{pole}}^2}, \ c_V \simeq \frac{1}{M_{\text{pole}}^4} \simeq \left(\frac{\langle r^2 \rangle_V}{6}\right)^2$$

However the above relation is NOT built in NLO ChPT.

$$\langle r^2 \rangle_V^{\text{NLO}} = -\frac{2}{Nf^2} \left(1 + 6Nl_6^r + \ln\left[\frac{m_\pi^2}{\mu^2}\right] \right)$$

$$c_V^{\text{NLO}} = \frac{1}{30Nf^2m_\pi^2} \qquad \qquad N = (4\pi)^2$$

$$\text{The above relation implies} \qquad \langle r^2 \rangle_V \simeq \sqrt{\frac{6}{5}} \frac{1}{4\pi f m_\pi} \simeq 0.22 \,\text{fm}^2$$

 $\langle r^2 \rangle_V^{\text{exp,PDG}} = 0.452(11) \,\text{fm}^2$

NLO Fit

ETMC

NLO ChPT does not reproduce lattice data and a single pole ansatz. A similar conclusion is obtained by JLQCD-TWQCD.

Possible "solutions"

QCDSF-UKQCD

ChPT is NOT used for the chiral extrapolation.

extrapolate the "pole" mass

 $\langle r^2 \rangle_V = 0.441(19)(56)(-29) \text{ fm}^2$

 $\langle r^2 \rangle_V^{\text{exp,PDG}} = 0.452(11) \,\text{fm}^2$

NLO SU(2)/SU(3) ChPT for the form factor very small momentum transfer only

$$\begin{split} F_V^{\rm SU(2)}(q^2) &= 1 + \frac{1}{f^2} \left[-2l_6^r q^2 + 4\bar{\mathcal{H}}(m_\pi^2, q^2, \mu^2) \right] \\ F_V^{\rm SU(3)}(q^2) &= 1 + \frac{1}{f_0^2} \left[4L_9^r q^2 + 4\bar{\mathcal{H}}(m_\pi^2, q^2, \mu^2) + 2\bar{\mathcal{H}}(m_K^2, q^2, \mu^2) \right] \\ \bar{\mathcal{H}}(m^2, q^2, \mu^2) &= \frac{m^2 H(q^2/m^2)}{32\pi^2} - \frac{q^2}{192\pi^2} \ln \frac{m^2}{\mu^2} \\ H(x) &= -\frac{4}{3} + \frac{5x}{18} - \frac{x-4}{6} \sqrt{\frac{x-4}{x}} \ln \left(\frac{\sqrt{(x-4)/x} + 1}{\sqrt{(x-4)/x} - 1} \right) \end{split}$$

 $af = 0.0665(47), af_0 = 0.0541(40)$: input $l_6^r(m_{\rho}) = -0.0093(10), \langle r^2 \rangle_V^{330 \text{MeV}} = 0.354(31) \text{ fm}^2, \langle r^2 \rangle_V^{139 \text{MeV}} = 0.418(38) \text{ fm}^2$

SU(2) ChPT $Q_{\text{max}}^2 = 0.013 \ (1 \text{ point})$

ETMC

 $c_V^{\rm NLO} < c_V^{\rm NNLO}$

NNLO SU(2) ChPT for $\langle r^2 \rangle_V$, c_V and $\langle r^2 \rangle_S$

 $\langle r^2 \rangle_V = 0.411(26) \text{ fm}^2, c_V = 3.26(21) \text{ GeV}^{-4}$ = 0.00488 fm⁴ $c_V^{\text{pole}} = 0.00469 \text{ fm}^4$

convergence?

3-3. S-parameter

Vacuum polarization functions

$$\Pi_{V_{\mu\nu}}(q) - \Pi_{A_{\mu\nu}}(q) = (q^2 \delta_{\mu\nu} - q_{\mu}q_{\nu}) \Pi_{V-A}^{(1)}(q^2) - q_{\mu}q_{\nu}\Pi_{V-A}^{(0)}(q^2)$$
$$\Pi_{J_{\mu\nu}}(q) = \int d^4x \, e^{iqx} \, \langle 0|T[J_{\mu}^{ud}(x)J_{\nu}^{du}(0)]|0\rangle$$
$$\mathsf{NLO ChPT}(\mathsf{Gasser-Leutwyler'85})$$
$$\Pi_{V-A}^{(1)}(q^2) = -\frac{f_{\pi}^2}{q^2} - 8L_{10}^r(\mu) - \frac{1}{24\pi^2} \left[\ln\frac{m_{\pi}^2}{\mu^2} + \frac{1}{3} - H(4m_{\pi}^2/q^2)\right]$$
$$H(x) = (1+x) \left[\sqrt{1+x}\ln\left(\frac{\sqrt{1+x}-1}{\sqrt{1+x}-1}\right) + 2\right]$$

$$S = -16\pi \left[\frac{L_{10}^{r}(\mu)}{192\pi^{2}} \left\{ \ln \frac{\mu^{2}}{m_{H}^{2}} - \frac{1}{6} \right\} \right]$$

Higgs mass

 $\Pi_{V-A}^{(i)} = 0$ if the chiral symmetry is exact.

Shintani et al., Phys. Rev. Lett. 101(2008)242001.

• 2 flavor, Overlap quarks, fixed topology, a=0.12 fm, L=1.9 fm $m_{\pi} \geq 290 \text{ MeV}$

JLQCD-TWQCD

 $q^2 \leq (0.32)^2 \text{ GeV}^{-2}$ (1 point)

Significant in each channel. Small in the difference.

$$L_{10}^{r}(m_{\rho}) = -5.2(2)\binom{+0}{-3}\binom{+5}{-0} \times 10^{-3}$$

exp: $-5.09(47) \times 10^{-3}$

3-4. Topological susceptibility from fixed topology

Full QCD simulations

Changing topological charges becomes difficult at lighter quark mass and/or near the continuum limit.

Topological susceptibility from QCD with fixed topology.

Basic formula at fixed Q

Aoki-Fukaya-Hashimoto-Onogi, PRD76(2007)065608

$$\lim_{|x|\to\infty} \langle mP^0(x)mP^0(0)\rangle_Q = -\frac{\chi_t}{V} + \frac{1}{V^2} \left(Q^2 - \frac{c_4}{2\chi_t}\right) + O\left(\frac{1}{V^3}\right)$$

 $P^0(x)$: singlet pseudo-scalar ensity Q: fixed topological charge m: quark mass

 $\chi_t = \frac{1}{V} \langle Q^2 \rangle$: topological susceptibility at $\theta = 0$ $c_4 = \frac{1}{V} \langle Q^4 \rangle_c$: 4-th cumulant

JLQCD-TWQCD

Aoki *et al.,* Phys. Lett. B655(2008)294. Chiu *et al.,* arXiv:0810.0085[hep-lat]

4. Summary

- pion mass and decay constant
 - chiral log is clearly seen.
 - NLO SU(2) ChPT works at pion mass less than 500 MeV.
 - NLO SU(3) ChPT fails to work for the dynamical strange quark
 - NLO SU(2) ChPT even for 2+1 flavor QCD
- pion form factors: need more investigations
 - data vs. ChPT, convergence of ChPT
- New quantities and ChPT
 - S-parameter: need more investigations
 - topological susceptibility: try a fit with NLO ChPT
- (future) direct calculation of pi-pi scattering and ChPT

Talk by A. Walker-Loud (July 7,17:30@WG3)