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1. Recent full QCD simulations



Full QCD simulations near the physical quark mass becomes possible. 

Systematic errors in lattice QCD

• finite size  L

• corrected by ChPT ?

• finite lattice spacing  a

• heavier u,d quark mass

• chiral extrapolation is needed.  ChPT ?

by improvements for both computers and algorithms



(incomplete) lists of full QCD simulations

Group flavors a(fm) L(fm) mmin.
π (MeV)

PACS-CS 2+1 0.09 2.9 160

MILC 2+1 >0.06 3.3 240
BMW 2+1 >0.065 >4.2 190

JLab 2+1 0.12 1.5~2.9 385

CERN-ToV 2 >0.05 1.7~ 1.9 300
ETMC 2 >0.07 2.1 300

CLS 2 >0.06 2.5 260

QCDSF 2 >0.072 1.7~3.2 240
RBC-UKQCD 2+1 0.11 2.8 330

JLQCD 2+1 0.11 1.8 315

RBC 2 0.12 2.5 490
JLQCD 2 0.12 1.9 290

conventional
quark action
(Wilson/KS)

chirally symmetric
quark action
(Overlap/DW)



Hadron spectra
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Agreement between Lattice QCD and experiment is excellent !

mπL ≥ 4

a → 0

Science 322(2008)1224.



PACS-CS Collaboration

a = 0.09 fm
L = 2.9 fm
mmin.

π = 156 MeV

We are almost on the 
“physical point”.

Calculations with L=5.8 fm 
and                          are on-going.mπ ! 140 MeV

“Real QCD”

mπL > 4

Phys. Rev. D79(2009)034503.
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2. Pion mass and decay constant



2-1. Nf=2 and Chiral Perturbation Theory



SU(2) ChPT formula

fπ = f

{
1 − 2Bmq

8π2f2

[
ln

(
2Bmq

µ2

)
− l4(µ)

]}

m2
π

mq
= 2B

{
1 +

2Bmq

16π2f2

[
ln

(
2Bmq

µ2

)
− l3(µ)

]}
LO

LO

NLO

NLO

fπ = 132 MeV

log

log
LOC

LOC

Gasser-Leutwyler, 1984



Noaki, et al., Phys.Rev.Lett. 101(2008)202004.

JLQCD/TWQCD Collaborations

• Ovelap fermion (exact “chiral” symmetry), a=0.12fm 

• fixed topology

•  1/V correction by ChPT

•                                                   

• finite volume correction by ChPT (NLO LOCs are required)

mπ ≥ 290 MeV, mπL ≥ 2.9

Colangero-Dürr-Haefeli’05

destructive
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choices of 
expansion parameter x ≡ 2Bmq

8π2f2 x̂ ≡ m2
π

8π2f2

m2
π

mq
= 2B

[
1 +

1
2
x lnx

]
+ c3x fπ = f [1 − x lnx] + c4x

ξ ≡ m2
π

8π2f2
π

290 750

450 MeV

ξ

x
x̂

• NLO fits work for the lightest 3 
data.

• all 3 choices

• establish the validity of NLO 
ChPT fits

• Xi-fit describes data beyond 
the fitted region.



NNLO Fits

3

fit. This is because f , which is significantly smaller than
fπ of our data, enters in the definition of the expansion
parameter. Qualitatively, by replacing mq and f by m2

π
and fπ the higher loop effects in ChPT are effectively
resummed and the convergence of the chiral expansion is
improved.

We then extend the analysis to include the NNLO
terms. Since we found that only the ξ-fit reasonably de-
scribes the data beyond mπ ! 450 MeV, we perform the
NNLO analysis using the ξ-expansion in the following.
With other expansion parameters, the NNLO fits includ-
ing heavier mass points are unstable. At the NNLO, the
formulae in the ξ-expansion are [2]

m2
π/mq = 2B

[
1 + 1

2ξ ln ξ + 7
8 (ξ ln ξ)2

+
(

c4
f − 1

3 (l̃ phys + 16)
)

ξ2 ln ξ
]

+ c3 ξ(1 − 9
2ξ ln ξ) + α ξ2, (3)

fπ = f
[
1 − ξ ln ξ + 5

4 (ξ ln ξ)2 + 1
6 (l̃ phys + 53

2 )ξ2 ln ξ
]

+ c4 ξ(1 − 5ξ ln ξ) + β ξ2. (4)

In the terms of ξ2 ln ξ, the LECs at NLO appear: l̃phys ≡
7 l̄ phys

1 +8 l̄ phys
2 −15 ln(2

√
2πfphys

π /mπ+)2, where fphys
π =

130.7 MeV. We input the phenomenological estimate
l̃phys = −32.0 ± 4.3 to the fit. Since the data are not
precise enough to discriminate between ξ2 ln ξ and ξ2 in
the given region of ξ (0.06∼0.19), fit parameters α and
β partially absorb the uncertainty in l̃phys. In fact, our
final results for the LECs is insensitive to l̃phys.

In Figure 2, we show the NNLO fits using all the data
points (solid curves). In these plots m2

π/mq and fπ are
normalized by their values in the chiral limit. As ex-
pected from the good convergence of the ξ-fit even at
NLO, the NNLO formulae nicely describe the lattice data
in the whole data region. We also draw a truncation at
the NLO level (dashed curves) but using the same fit
parameters. The difference between the NLO truncated
curves and the NLO fit curves to the three lightest data
points (Figure 1) is explained by the presence of the terms
ξ(1− 9

2ξ ln ξ) and ξ(1−5ξ ln ξ) in (3) and (4), respectively.
Since the factors (1− 9

2ξ ln ξ) and (1− 5ξ ln ξ) are signif-
icantly larger than 1 in the data region, the resulting fit
parameters c3 and c4 in the NNLO formulae are much
lower than those of the NLO fits. This indicates that
the determination of the NLO LECs is quite sensitive to
whether the NNLO terms are included in the analysis,
while the leading order LECs are stable.

From Figure 2 we can explicitly observe the conver-
gence behavior of the chiral expansion. For instance, at
the kaon mass region mπ ∼ 500 MeV, the NLO term
contributes at a −10% (+28%) level to m2

π/mq (fπ), and
the correction at NNLO is about +3% (+18%). At least,
the expansion is converging (NNLO is smaller than NLO)
for both of these quantities, but quantitatively the con-
vergence behavior depends significantly on the quantity
of interest. For fπ the NNLO contribution is already
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FIG. 2: NNLO chiral fits using all the data points for m2
π/mq

(top) and fπ (bottom). Data are normalized by the value in
the chiral limit. Solid curves show the NNLO fit, and the
truncated expansions at NLO are shown by dashed curves.

substantial at the kaon mass region.
From the ξ-fit, we extract the LECs of ChPT, i.e.

the decay constant in the chiral limit f , chiral conden-
sate Σ = Bf2/2, and the NLO LECs l̄phys

3 = −c3/B +
ln(2

√
2πf/mπ+)2 and l̄phys

4 = c4/f + ln(2
√

2πf/mπ+)2.
For each quantity, a comparison of the results between
the NLO and the NNLO fits is shown in Figure 3. In
each panel, the results with 5 and 6 lightest data points
are plotted for the NNLO fit. The correlated fits give
χ2/dof = 1.94 and 1.40, respectively. For the NLO fits,
we plot results obtained with 4, 5 and 6 points to show
the stability of the fit. The χ2/dof is less than 1.94. The
results for these physical quantities are consistent within
either the NLO or the NNLO fit. On the other hand,
as seen for l̄phys

4 most prominently, there is a significant
disagreement between NLO and NNLO. This is due to
the large NNLO coefficients as already discussed.

We quote our final results from the NNLO fit
with all data points: f = 111.7(3.5)(1.0)(+6.0

−0.0) MeV,
ΣMS(2 GeV) = [235.7(5.0)(2.0)(+12.7

− 0.0) MeV]3, l̄phys
3 =

3.38(40)(24)(+31
− 0), and l̄phys

4 = 4.12(35)(30)(+31
− 0).

From the value at the neutral pion mass mπ0 =
135.0 MeV, we obtain the average up and down
quark mass mud and the pion decay constant as
mMS

ud (2 GeV) = 4.452(81)(38)(+ 0
−227) MeV and fπ =

119.6(3.0)(1.0)(+6.4
−0.0) MeV. In these results, the first error

is statistical, where the error of the renormalization con-
stant is included in quadrature for Σ1/3 and mud. The
second error is systematic due to the truncation of the
higher order corrections, which is estimated by an order
counting with a coefficient of ≈ 5 as appeared at NNLO.
For quantities carrying mass dimensions, the third error
is from the ambiguity in the determination of r0. We
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FIG. 2: NNLO chiral fits using all the data points for m2
π/mq

(top) and fπ (bottom). Data are normalized by the value in
the chiral limit. Solid curves show the NNLO fit, and the
truncated expansions at NLO are shown by dashed curves.

substantial at the kaon mass region.
From the ξ-fit, we extract the LECs of ChPT, i.e.

the decay constant in the chiral limit f , chiral conden-
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each panel, the results with 5 and 6 lightest data points
are plotted for the NNLO fit. The correlated fits give
χ2/dof = 1.94 and 1.40, respectively. For the NLO fits,
we plot results obtained with 4, 5 and 6 points to show
the stability of the fit. The χ2/dof is less than 1.94. The
results for these physical quantities are consistent within
either the NLO or the NNLO fit. On the other hand,
as seen for l̄phys

4 most prominently, there is a significant
disagreement between NLO and NNLO. This is due to
the large NNLO coefficients as already discussed.

We quote our final results from the NNLO fit
with all data points: f = 111.7(3.5)(1.0)(+6.0
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3 =

3.38(40)(24)(+31
− 0), and l̄phys

4 = 4.12(35)(30)(+31
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From the value at the neutral pion mass mπ0 =
135.0 MeV, we obtain the average up and down
quark mass mud and the pion decay constant as
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higher order corrections, which is estimated by an order
counting with a coefficient of ≈ 5 as appeared at NNLO.
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Colangero-Gasserr-Leutwyler’01
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Determination of LOCs
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European Twisted Mass Collaborations Boucaud, et al., Phys.Lett. B650(2007)304
Boucaud, et al.,arXiv:0810.2873[hep-lat]
C. Urbach, arXiv:0710.1517[hep-lat]

• twisted mass QCD 

•              (maximal twist)           O(a) lattice artifact is absent.

• a=0.087, 0.067 fm,  L=2.1 fm

• finite volume correction by ChPT(GL, CDH)

mπ ≥ 310 MeV, mπL ≥ 3.3 (4.3)

Lcont.
tm = mq q̄e

iθγ5τ3q, q =
(

u
d

)

θ = π/2

RO =
O(L) − O(∞)

O(∞)
= cOξg̃1(λ), ξ =

mLO
π

(4πf)2
, λ = mLO

π L

Gasser-Luetwyler’87

g̃1(x) =
∞∑

n=1

4m(n)√
nx

K1(
√

nx) cmπ =
1

Nf
, cfπ = −Nf

Talk by G. Herdoizo (July 6,14:40@WG1)



NLO Fits Boucaud, et al., Phys.Lett. B650(200)304a=0.087 fm,
with finite volume correction

300-500 MeV
fit range

l3(mπ) = 3.65(12)

l4(mπ) = 4.52(06)

NLO fits work at 500 MeV or below.



NNLO vs. NLO Boucaud, et al.,arXiv:0810.2873[hep-lat]a=0.087, 0.067 fm,
with finite volume correction

NLO
NNLO

NLO, scaling violation is included

fit range

fit range

m2
π

mq
fπ

Σ1/3 f l3 l4
NLO 267(2) 121.7(1) 3.42(8) 4.59(4)

NNLO 263(2) 121.7(3) 3.15(9) 4.72(12)

variation is significant



CERN-TorVergata Del Debbio, et al., JHEP 02(2007)056

• (O(a)-improved) Wilson, a= 0.052,0.072,0.078 fm

a=0.072 fm, L=1.7 fm
a=0.052 fm,  L=1.7 fm
a=0.078 fm, L=1.9 fm

NLO fit

m2
π

377 MeV
381 MeV

403 MeV

495 MeV

l3(mπ) = 3.0(5)



Summary: Nf=2 QCD and SU(2) ChPT

• NLO ChPT works at 

• “Chiral-log” is unambiguously observed on the lattice.(first time).

• NNLO may describe data beyond that region.

• some LOCs are fixed to phenomenological values.

• NNLO corrections seem large, in particular for 

• some NLO LOCs are significantly affected.

mπ ≤ 500 MeV

• Finite size correction: ChPT formula should be checked by Lattice

• NNLO fits without using phenomenological inputs.

• simultaneous fits to various quantities are needed.

• Finite Size correction should be also included.

• inclusion of the lattice artifact in ChPT(Wilson, tmQCD, KS)

Now

Future

fπ



Finite size correction ETMC, C. Urbach, arXiv:0710.1517[hep-lat]

α
e−mπL

L3/2

mπL data GL CDH
mπ 3.0 +6.2% +1.8% +4.7%

3.3 +1.8 +0.62 +1.0
3.5 +1.1 +0.8 +1.3

fπ 3.0 -10.7 -7.3 -8.9
3.3 -2.5 -2.5 -2.4
3.5 -1.8 -3.2 -2.9

The resummed Lüscher formula is roughly consistent with lattice data,
but more detailed studies are needed for definite conclusions.

R

=R



2-2. Nf=2+1 QCD and ChPT



• K meson mass is too heavy for NLO ChPT to work ?

• SU(2) vs. SU(3) ChPT

Problem of Nf=2+1 QCD

fπ = f0

{
1 − 2µπ − µK +

2B0

f2
0

(8mlL5 + 8(2ml + ms)L4)
}

m̃2
π = 2mlB0, m̃2

K = (ml + ms)B0, m̃2
η =

2
3
(ml + 2ms)B0

m2
π

mq
= 2B

{
1 +

2Bmq

16π2f2

[
ln

(
2Bmq

µ2

)
− l3(µ)

]}

m2
π

ml
= 2B0

{
1 + µπ − 1

3
µη +

2B0

f2
0

(16ml(2L8 − L5) + 16(2ml + ms)(2L6 − L4))
}

fπ = f

{
1 − 2Bmq

8π2f2

[
ln

(
2Bmq

µ2

)
− l4(µ)

]}

µPS =
m̃2

PS

16π2f2
0

ln
(

m̃2
PS

µ2

)

SU(3)

SU(2)

B, f , l3,4: ms dependent



PACS-CS Collaboration Aoki et al., Phys. Rev. D79(2009)034503.
Kadoh et al., arXiv:0810.0351[hep-lat]
Y. Kuramashi, arXiv: 0811.2630[hep-lat]

• O(a) improved Wilson, a=0.9 fm, L=2.9 fm

• perturbative renormalization

• Wilson ChPT +O(a) improvement          continuum ChPT at NLO  

mπ ≥ 160 MeV, mπL ≥ 2.3

PACS-CS results for 2+1 flavor lattice QCD simulation on and off the physical point
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3.2 SU(2) ChPT

We try further chiral analyses on the pseudoscalar meson sector employing the SU(2) ChPT

up to NLO, where the K meson is treated as a matter field in the isospin 1/2 linear representation

of the SU(2) chiral transformation[36]. The strange quark contributions to the SU(2) LECs are

analytically expanded about the physical value. The SU(2) ChPT formulae for m" and f" are given

by

m2
"

2mud

= B

{

1+
1

16"2

m̄2
"

f 2
ln

(

m̄2
"

µ2

)

+ 4
m̄2
"

f 2
l3

}

, (3.7)

6

NLO/LO(SU(3)) > NLO/LO(SU(2))

SU(2) ChPT works much better than 
SU(3) ChPT at NLO

χ2/dof(SU(3)) ! 4

χ2/dof(SU(2)) ! 0.4



• a=0.11 fm, L=2.7 fm / a=0.08 fm, L=2.6 fm

• Domain-Wall quarks (almost “chiral”)

• DW-ChPT            continuum ChPT at NLO with

• SU(2) / SU(3)  Partially Quenched ChPT at NLO

• one strange quark mass

RBC-UKQCD Collaborations Allton et al., Phys. Rev. D78(2008)114509.
E. Scholz, arXiv: 0809.3251[hep-lat]

mπ ≥ 330 MeV, mπL ≥ 4.6 / mπ ≥ 310 MeV, mπL ≥ 4.1

mresa = 0.003 / 0.0007

New

additive mass renormalization

m̃f = mf + mres



SU(2) PQChPT fits with
m2

π

mq
fπ

a=0.11 fm

msea
π

331 MeV

419 MeV

mx + my ≤ 0.02

NLO SU(2) PQChPT 
works.

χ2/dof ! 0.3

l3(mπ) = 3.13(33)

ms = 0.04

l4(mπ) = 4.43(14)



SU(2) vs. SU(3)

NLO SU(3) PQChPT works only at mx + my ≤ 0.02

ms = 0.04

χ2/dof ! 0.7

This can not cover
SU(3) vs SU(2)

• SU(2) chiral limit better controlled

• SU(2) plus kaon: no need for SU(3)

• NLO SU(3) not sufficient for ms . . .

• . . . but only one value of ms so far

160

140

120

f

100

f0

80
420

2
330

2
250

2
140

20

fPS [MeV]

m
2
PS [MeV

2
]

f!

mll = 331 MeV
mll = 419 MeV

SU(2) fit
SU(3) fit

E. E. Scholz (RBC/UKQCD) — Physical Results from 2+1 Flavor Domain Wall QCD 11

Partially quenched data

SU(2) chiral limit 

SU(3) chiral limit 

NLO correction : 30-40% for SU(2) 
                           60-70% for SU(3)

NLO SU(2) PQChPT behaves 
better than SU(3).

NLO SU(3) ChPT is not 
sufficient for the strange quark.



results at a=0.08 fm E. Scholz, arXiv: 0809.3251[hep-lat]

307 MeV

366

418

NLO SU(2) ChPT is consistent  with NLO SU(2) PQChPT.

mx + my ≤ 0.016



MILC Collaborations Aubin et al., Phys. Rev. D70(2004)114501.
Bernard et al., arXiv: 0710.1118[hep-lat]

• a=0.06,0.09,0.12,0.15 fm,  L > 2.4 fm

• rooted staggered quarks

• rooted staggered SU(3) PQChPT fits( includes lattice artifacts)

• need NNLO analytic terms to fit data

mπL ≥ 3.4

mx + my ≤ (0.39 ∼ 0.56)ms

failure of NLO SU(3) PQChPT ?
need NLO SU(2) fits?

La
rg

e 
la

tti
ce

 a
rti

fa
ct

Talk by U. Heller (July 6,15:05@WG1)



Latest analysis Talk by U. Heller (July 6,15:05@WG1)

“Low mass” SU(3) chiral fits

Red curve: continuum extrapolation (a set to zero) and valence
and sea quark masses set equal (“full QCD”) with strange mass

taken as 0.6mphys
s

MILC results ..., Chiral 09, Bern, Jul 6, 2009. U.M. Heller – p. 17/31

SU(2) chiral fits

Also shown is the convergence (LO, NLO, NNLO) in the
continuum limit.

MILC results ..., Chiral 09, Bern, Jul 6, 2009. U.M. Heller – p. 23/31

fπ

SU(2) fit SU(3) fit

NLO rooted staggered  PQChPT+ NNLO continuum PQChPT

dyn. s (dyn. ud)

dyn. s

dyn. ud

valence quarkvalence quark

dynamical ms ≤ 0.6mphys.
s

valence: mx + my ≤ 0.6 mphys.
s

dynamical ms ! mphys.
s



• NLO SU(3) (PQ)ChPT seems to fail at strange quark mass

• NLO SU(2) (PQ)ChPT seems to work at 

• strange quark mass dependence needed to be interpolated.

• SU(2) LOCs may be extracted.

• Nf=3 QCD simulation may be required to determine SU(3) LOCs

• NLO SU(3) (PQ)ChPT at

• exact “chiral” symmetry is preferable.

Summary: Nf=2+1 QCD and ChPT

mπ ≤ 500 MeV

mπ ≤ 500 MeV
Talk by U. Heller (July 6,15:05@WG1)



M2
π

mq(2 GeV)
= 2B(2 GeV)

{
1 +

M2
π

16π2f2

[
ln

(
M2

π

m2
π

)
− l3(mπ)

]}

0 0.05 0.1 0.15 0.2 0.25
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

M2
π (GeV2)

0.1392 0.520.42
0.32

JLQCD-TWQCD, Overlap, Nf=2, NNLO

PACS-CS, clover, Nf=2+1

ETMC, tmQCD, Nf=2, NNLO, a->0

RBC-UKQCD, DWQCD, Nf=2+1

MILC, KS, Nf=2+1, a->0

M
2 π

m
q
(2

G
eV

)(G
eV

)

Perturbative Renor.

Non-Perturbative Renor.



fπ = f

{
1 − M2

π

8π2f2

[
ln

(
M2

π

m2
π

)
− l4(mπ)

]}

0 0.05 0.1 0.15 0.2 0.25
0.1

0.12

0.14

0.16

0.18

0.1392

M2
π (GeV2)

0.52

JLQCD-TWQCD

ETMC

PACS-CS

RBC-UKQCD

MILC

exp.

f π
(G

eV
)



3. Others



3-1. Pion Form Factors



Vector From Factor

Scalar From Factor

〈π(p′)|Vµ|π(p)〉 = (p + p′)µFV (q2), q2 = (p − p′)2

〈π(p′)|S|π(p)〉 = FS(q2)

〈r2〉S = 6
∂FS(q2)

∂q2

∣∣∣∣
q2=0

〈r2〉V = 6
∂FV (q2)

∂q2

∣∣∣∣
q2=0

cV =
∂2FV (q2)

∂(q2)2

∣∣∣∣
q2=0

charge radius

curvature

scalar radius



Recent full QCD calculations

quarks a(fm) L(fm)
Q2

min

(GeV2)
Q2

max

(GeV2)
mπ

(MeV) FX

QCDSF-
UKQCD 2 O(a) 

Wilson
0.07~
0.12

1.4~
2.0 0.31 4.3 400~

1011 V

RBC-
UKQCD 2+1 Domain

Wall 0.11 2.8 0.013 0.258 330 V

ETMC 2 twisted
mass

0.07~
0.09

2.2~
2.9 0.05 0.8 260~

580 V

JLQCD-
TWQCD 2 Overlap 0.12 1.9 0.252 1.7 290~

750 V,S

ETMC: Talk by A. Juettner (July 6,16:40@WG1)
JLQCD-TWQCD: Talk by T. Kaneko (July 6, 17:05@WG1)

Q2 = −q2

QCDSF-UKQCD, Eur. Phys. J. C51(2007)335.
RBC-UKQCD, JHEP07(2008)112.
ETMC, arXiv:0812.4042[hep-lat].
JLQCD-TWQCD, arXiv:0905.2465[hep-lat]



q2 dependence of FV

FV (q2) =
1

1− q2/M2
pole

a single pole ansatz works 
rather well.

ETMC

Vector Meson Dominace

Mpole = Mρ



RBC-UKQCD JLQCD-TWQCD

pole + polynomial

pole fit

QCDSF

VMD
mπ = 330 MeV

mπ = 290 MeV

mπ = 450 MeV



NLO ChPT and a problem

A single pole ansatz works rather well in all lattice simulations at small q2

〈r2〉V # 6
M2

pole

, cV # 1
M4

pole

#
(
〈r2〉V

6

)2

However the above relation is NOT built in NLO ChPT.

〈r2〉NLO
V = − 2

Nf2

(
1 + 6Nlr6 + ln

[
m2

π

µ2

])

cNLO
V =

1
30Nf2m2

π

N = (4π)2

The above relation implies 〈r2〉V #
√

6
5

1
4πfmπ

# 0.22 fm2

〈r2〉exp,PDG
V = 0.452(11) fm2



NLO Fit

〈r2〉V

cV

ETMC

NLO ChPT does not reproduce lattice data and a single pole ansatz.
A similar conclusion is obtained by JLQCD-TWQCD.



Possible “solutions” 

QCDSF-UKQCD ChPT is NOT used for the chiral extrapolation.

extrapolate the “pole” mass

(r
0

M
la

t)
2

M
2 la

t
[G

eV
2 ]

(r0 mπ)
2

m
2
π [GeV2]

3
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0 1 2 3 4 5 6 7 8
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Figure 3: Extrapolations of the squared monopole mass against the squared pion mass. The
solid line with error band is linear extrapolation as obtained from fit 2 while the dotted line
shows the central curve for fit 4 (whose fit range is limited to m2

π < 0.8 GeV2). The cross
marks the monopole mass corresponding to the PDG value [24] of the pion charge radius,
see Eq. (18) and Table 2. The different symbols refer to our β-values: squares (5.20), circles
(5.25), half-full circle (5.26), diamonds (5.29), and hexagons (5.40).

the insert in Fig. 4, which shows the region Q2 < 1 GeV2, where most of the experimental
points lie. The same fit for the pions with Γ = γ5 gives Mphys = 0.773(17)GeV, with a bigger
χ2/d.o.f. of 1.01.

We now investigate the validity of the monopole ansatz for our data. Instead of constrain-
ing the fitting function to a monopole form, one can also take a general power law, i.e. use a
function

Fπ(Q2, m2
π) =

(

1 +
Q2

pM2(m2
π)

)−p

,

M2(m2
π) = c0 + c1m

2
π ,

(22)

with an additional parameter, p. Note that the relation (18) is still valid, independent
of p. A combined fit to all our data sets results in p = 1.173(58), now with a mass
Mphys = 0.757(18)GeV and a χ2/d.o.f. = 0.58, indicating that the monopole form is a
good description. Taking the difference between this number and the result of the fit to (21),
we assign a systematic error of ∆Mfit = 30 MeV to Mphys due to the ansatz for the fitting
function. Another alternative is to calculate an effective monopole mass for every momentum
Q2 separately by solving Eq. (20) for Mlat:

Meff(Q2) = Q

[

1

F lat
π (Q2)

− 1

]−1/2

. (23)
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M2
pole = c0 + c1m

2
π

F
π
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2 )

Q
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Figure 4: Combined fit to (21) of our data for all lattices. We plot experimental data
(diamonds) [18, 21, 23] and lattice results extrapolated to the physical pion mass as explained
in the text. To avoid having a cluttered plot we do not show lattice results with errors bigger
than 80%, which are nevertheless included in the fit. The insert shows the good agreement
to the experimental data for a momentum transfer of up to 1GeV2. Also included is an error
band for the fit.

We show such effective masses for some of our lattices in Fig. 5, where one can see that the
effective monopole masses stay constant within errors over a large range of Q2 and agree with
the monopole masses given in Table 3. This again indicates that the monopole is a good
description for our data. The validity of the fit over the whole Q2 range is further tested by
combined fits to Eq. (21) in a limited fitting range Q2 ≤ Q2

max or Q2
min ≤ Q2. This is shown

in Fig. 6, where we successively limit the fit to smaller (larger) momenta. Note that the
increasing errors to the left or the right are due to the decrease in the number of fitted data
points. Within these errors, the change in the monopole mass is consistent with statistical
fluctuations. From Figs. 5 and 6 we can conclude that the monopole ansatz works well in
the entire region for which we have lattice data, from Q2 = 0 to about 4 GeV2.

The results discussed so far have used the lattice data normalised as in (19). Using

ZV F lat,bare
π (0) = F lat,ren

π (0) = 1, (24)

we can determine ZV from our (unrenormalised) data at zero momentum transfer. We find
reasonable agreement with the values of ZV given in [11], albeit with errors that are larger
by at least an order of magnitude. The bigger errors are likely due to our choice of tsink,
which results in noisier two-point functions.

11

FV (q2) at physical pion mass

exp. lattice data

〈r2〉V = 0.441(19)(56)(−29) fm2

〈r2〉exp,PDG
V = 0.452(11) fm2



RBC-UKQCD NLO SU(2)/SU(3) ChPT for the form factor
very small momentum transfer only 

F SU(2)
V (q2) = 1 +

1
f2

[
−2lr6q

2 + 4H̄(m2
π, q2, µ2)

]

F SU(3)
V (q2) = 1 +

1
f2
0

[
4Lr

9q
2 + 4H̄(m2

π, q2, µ2) + 2H̄(m2
K , q2, µ2)

]

H̄(m2, q2, µ2) =
m2H(q2/m2)

32π2
− q2

192π2
ln

m2

µ2

H(x) = −4
3

+
5x

18
− x− 4

6

√
x− 4

x
ln

(√
(x− 4)/x + 1√
(x− 4)/x− 1

)

af = 0.0665(47), af0 = 0.0541(40): input

SU(2) ChPT Q2
max = 0.013 (1 point)

lr6(mρ) = −0.0093(10), 〈r2〉330MeV
V = 0.354(31) fm2, 〈r2〉139MeV

V = 0.418(38) fm2



330MeV

139.57 MeV

0.013

0.022

0.035



ETMC
NNLO SU(2) ChPT for the form factor 
Simultaneous fit for  mπ, fπ and FV (q2)

experimental values of 〈r2〉S = 0.61(4) fm2 fix some LECs 
through NNLO formula

exp

FV (q2) at physical pion mass

〈r2〉V = 0.438(29) fm2

0.05 ≤ Q2 ≤ 0.8 [GeV2]



JLQCD-TWQCD
NNLO SU(2) ChPT for 〈r2〉V , cV and 〈r2〉S

NLO

NLONNLO

NNLO

3.85(60)

〈r2〉V = 0.411(26) fm2, cV = 3.26(21) GeV−4

= 0.00488 fm4

cpole
V = 0.00469 fm4

cNLO
V < cNNLO

V convergence ?



NLO

NLO

NLO

NNLO

NNLO

NNLO

〈r2〉V = 0.409(23) fm2

〈r2〉S = 0.617(79) fm2

cV = 3.22(17) GeV−40.61(4)



3-3. S-parameter



Vacuum polarization functions

ΠVµν (q)−ΠAµν (q) = (q2δµν − qµqν)Π(1)
V−A(q2)− qµqνΠ(0)

V−A(q2)

Π(1)
V−A(q2) = −f2

π

q2
− 8Lr

10(µ)− 1
24π2

[
ln

m2
π

µ2
+

1
3
−H(4m2

π/q2)
]

H(x) = (1 + x)
[√

1 + x ln
(√

1 + x− 1√
1 + x− 1

)
+ 2

]

S = −16π

[
Lr

10(µ)− 1
192π2

{
ln

µ2

m2
H

− 1
6

}]

Higgs mass

NLO ChPT(Gasser-Leutwyler’85)

ΠJµν (q) =
∫

d4x eiqx 〈0|T [Jud
µ (x)Jdu

ν (0)]|0〉

Π(i)
V−A = 0 if the chiral symmetry is exact.



JLQCD-TWQCD

• 2 flavor, Overlap quarks, fixed topology, a=0.12 fm, L=1.9 fm
mπ ≥ 290 MeV

Shintani et al., Phys. Rev. Lett. 101(2008)242001.

“Lorentz” symmetry violation Chiral fit

Significant in each channel.
Small in the difference.

q2 ≤ (0.32)2 GeV−2 ( 1 point)

Lr
10(mρ) = −5.2(2)(+0

−3)(
+5
−0)× 10−3

exp: −5.09(47)× 10−3

290

760



3-4. Topological susceptibility 
from fixed topology 



Full QCD simulations
Changing topological charges becomes difficult

at lighter quark mass and/or near the continuum limit.

Topological susceptibility from QCD with fixed topology.

Basic formula at fixed Q Aoki-Fukaya-Hashimoto-Onogi, PRD76(2007)065608

lim
|x|→∞

〈mP 0(x)mP 0(0)〉Q = −χt

V
+

1
V 2

(
Q2 − c4

2χt

)
+ O

(
1

V 3

)

P 0(x): singlet pseudo-scalar ensity
Q: fixed topological charge
m: quark mass

χt = 1
V 〈Q2〉: topological susceptibility at θ = 0

c4 = 1
V 〈Q4〉c: 4-th cumulant



JLQCD-TWQCD Aoki et al., Phys. Lett. B655(2008)294.
Chiu et al., arXiv:0810.0085[hep-lat]

Topological susceptibility in (2+1)-flavor lattice QCD T.W. Chiu
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Figure 2: Topological susceptibility !ta
4 and y ≡ c4/(2!2t ") versus sea quark mass mqa for (2+1)-flavor

lattice QCD with fixed topological charge Qt = 0.
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ChPT fit  (Nf = 2+1)

Nf = 2 [arXiv:0710.1130]

ChPT fit  (Nf =2) 

Figure 3: The topological susceptibility !t versus mq for lattice QCD with fixed topology Qt = 0.

which is in good agreement that extracted from !t = 〈Q2t 〉/" with Qt determined by the spectral

flow method for the 2+1 flavors QCD configurations generated by the RBC and UKQCD Collab-

orations with domain-wall fermions [15]. Also, it is in good agreement with our previous results

extracted from !t in 2-flavor QCD [9, 10], and in the #-regime from the low-lying eigenvalues

[16]. The errors represent a combined statistical error (a−1 and ZMSm ) and the systematic error

respectively.

At this point, it is instructive to plot !t versus mq, for 2-flavor QCD (data from [9, 10]), and

(2+1)-flavor QCD (this work), as shown in Fig. 3. Now we can see clearly how the topological

susceptibility changes with respect to the number of flavors.

4. Concluding remark

In this paper, we have obtained the topological susceptibility !t and c4 in (2+1)-flavor QCD

from a lattice calculation of 2-point and 4-point correlators at a fixed global topological charge

6

χt =
m

Nf
Σ

Nf = 2

Nf = 2 + 1

χt =
(

1
mu

+
1

md
+

1
ms

)−1

Σ

LO ChPT fits

ΣMS(2 GeV) = (251± 7± 11 MeV)3 (Nf = 2)

ΣMS(2 GeV) = (249± 4± 2 MeV)3 (Nf = 2 + 1)



4. Summary



• pion mass and decay constant

• chiral log is clearly seen.

• NLO SU(2) ChPT works at pion mass less than 500 MeV.

• NLO SU(3) ChPT fails to work for the dynamical strange quark

• NLO SU(2) ChPT even for 2+1 flavor QCD

• pion form factors: need more investigations

• data vs. ChPT, convergence of ChPT

• New quantities and ChPT

• S-parameter: need more investigations

• topological susceptibility: try a fit with NLO ChPT

• (future) direct calculation of pi-pi scattering and ChPT

Talk by A. Walker-Loud (July 7,17:30@WG3)


