Determination of Low Energy Constants and Testing Chiral Perturbation Theory at Next to Next to Leading Order

Ilaria Jemos in collaboration with Johan Bijnens

Department of Theoretical Physics Lund University

9 July 2009, Berne

Why are we looking for relations between observables?

Chiral Perturbation Theory \rightarrow every observable can be written as a sum of terms of increasing importance in the Chiral expansion.

$$O = O^{(2)} + O^{(4)} + O^{(6)}$$

The p^6 part can be split as

$$O^{(6)} = O_{C_i(\text{tree level})} + O_{L_i(\text{one loop})} + O_{F_0(\text{two loops})}$$

We look for relations between observables such that the first contribution cancels out. Using these

- we can check how large is the loop contribution and test ChPT convergence in a *C_i* independent way
- we hoped to perform a fit of the *L_i* at NNLO not depending on the *C_i*. Unfortunately in most of the relations the NLO *L_i* contributions cancel too (the dependence on the *L_i* is only through the NNLO pieces)
- in this way we isolated combinations of the C_i

Overview of the processes considered and relations found

process	# observables	# relations
$\pi\pi$ scattering	11	5
πK scattering	14	5
πK and $\pi \pi$ scattering	no extra observables	2
$K_{\ell 4}$ (with πK scattering)	10	1
$\eta \rightarrow 3\pi \text{ (with } \pi K)$	6	2
scalar form factors $F_S^{\pi/K}(t)$	18	6
$F_S^{\pi/K}(t)$, $\pi\pi$ and πK scattering	no extra observables	2
$F_S^{\pi/K}(t), K_{\ell 4}, \pi \pi$ and πK scattering	no extra observables	1
$F_{S}^{\pi/K}(t)$, masses and decay constants	6	4
Vector form factors $F_V^{\pi/K}$	11	7
Total	76	35

3 Summary and Future Steps

Numerical analysis explanation

- Evaluation of each side of the relation using experimental data and/or dispersive analysis:
 [CGL] G. Colangelo, J. Gasser and H. Leutwyler, *Nucl. Phys.* B 603 (2001) 125 (ππ scattering)
 [BDM] Büttiker, Descotes-Genon, Moussallam *Eur. Phys. J.* C 33 (2004) 409 (πK scattering)
 [NA48/2] NA48/2 coll., *Eur. Phys. J.* C 54 (2008) 411-423 (*K*_{ℓ4})
 [E865] S. Pislak *et al.*, *Phys. Rev.* D 67 (2003) 072004 (*K*_{ℓ4})
- Solution Using ChPT up to p^6 results; $L_i = \text{fit10}$ and $C_i = 0$. For references see J. Bijnens, Prog. Part. Nucl. Phys. **58** (2007) 521
- Solution We quote the difference of the two \Rightarrow it contains only the p^6 piece coming from the C_i and higher order terms.
- Errors obtained adding in quadrature the uncertainties from experiments/dispersive results. No theoretical uncertainty due to the values of L_i or to higher orders has been added

•
$$A(\pi^a \pi^b \to \pi^c \pi^d) = \delta^{a,b} \delta^{c,d} A(s,t,u) + \delta^{cd} \delta^{bd} A(t,u,s) + \delta^{ad} \delta^{bc} A(u,t,s)$$

• The isospin amplitudes $T^{I}(s,t)$ (I = 0, 1, 2) are written in terms of the function A(s, t, u) and then expanded in partial waves:

$$T^{I}(s,t) = 32\pi \sum_{\ell=0}^{+\infty} (2\ell+1)P_{\ell}(\cos\theta)t^{I}_{\ell}(s)$$

Near threshold $\rightarrow t^{I}_{\ell}(s) = q^{2\ell}(a^{I}_{\ell} + b^{I}_{\ell}q^{2} + \mathcal{O}(q^{4}))$
$$q^{2} = \frac{1}{4}(s - 4m_{\pi}^{2}) \qquad a^{I}_{\ell}, b^{I}_{\ell} \dots = \text{scattering lengths, slopes, }\dots$$

• We studied only those observables where a dependence on the C_i shows up \rightarrow 11 threshold parameters

• A(s, t, u) can be written in terms of 6 independent parameters

$$A(s,t,u) = b_1 + b_2 s + b_3 s^2 + b_4 (t-u)^2 + b_5 s^3 + b_6 s (t-u)^2$$

+non polynomial part

- \Rightarrow 5 relations among the scattering lengths.
- They hold for $n_f = 2$, 3, at NLO and NNLO: not only the p^6 LECs cancel out, but also the tree level part involving the p^4 LECs does. Still there is L_i or l_i dependence through the non polynomial part

$$\left[5b_0^2 - 2b_0^0 - 27a_1^1 - 15a_0^2 + 6a_0^0\right]_{C_i} = -18\left[b_1^1\right]_{C_i}$$
(1)

$$\left[3a_1^1 + b_0^2\right]_{C_i} = 20\left[b_2^2 - b_2^0 - a_2^2 + a_2^0\right]_{C_i}$$
(2)

$$\left[b_0^0 + 5b_0^2 + 9a_1^1\right]_{C_i} = 90 \left[a_2^0 - b_2^0\right]_{C_i}$$
(3)

 $a_\ell^I(b_\ell^I)$ expressed in unit of $m_\pi^{2\ell}(m_\pi^{2\ell+2})$

	[CGL]	NLO	NLO	NNLO	NNLO	remainder
		1-loop	LECs	2-loop	1-loop	
LHS (1)	0.009 ± 0.039	0.054	-0.044	-0.041	-0.002	0.041 ± 0.039
RHS (1)	-0.102 ± 0.002	-0.009	-0.044	-0.060	-0.008	0.018 ± 0.002
10 LHS (2)	0.334 ± 0.019	0.209	0.097	0.103	0.029	-0.105 ± 0.019
10 RHS (2)	0.322 ± 0.008	0.177	0.097	0.120	0.034	-0.107 ± 0.008
LHS (3)	0.216 ± 0.010	0.166	0.029	0.053	0.016	-0.047 ± 0.010
RHS (3)	0.189 ± 0.003	0.145	0.029	0.049	0.020	-0.054 ± 0.003

	[CGL]	two-flavour	remainder
		[CGL]	
LHS (1)	0.009 ± 0.039	-0.003	0.007 ± 0.039
RHS (1)	-0.102 ± 0.002	-0.097	-0.005 ± 0.002
10 LHS (2)	0.334 ± 0.019	0.332	0.002 ± 0.019
10 RHS (2)	0.322 ± 0.008	0.318	0.004 ± 0.075
LHS (3)	0.216 ± 0.010	0.206	0.010 ± 0.010
RHS (3)	0.189 ± 0.003	0.189	0.000 ± 0.003

I. Jemos (Lund University)

Determination of LECs at NNLO

æ

$$\begin{bmatrix} 3b_1^1 + 25a_2^2 \end{bmatrix}_{C_i} = 10 \begin{bmatrix} a_2^0 \end{bmatrix}_{C_i}$$
(4)
$$\begin{bmatrix} -5b_2^2 + 2b_2^0 \end{bmatrix}_{C_i} = 21 \begin{bmatrix} a_3^1 \end{bmatrix}_{C_i}$$
(5)

 $a_\ell^I(b_\ell^I)$ expressed in unit of $m_\pi^{2\ell}(m_\pi^{2\ell+2})$

	[CGL]	NLO	NLO	NNLO	NNLO	remainder
		1-loop	LECs	2-loop	1-loop	
10 LHS (4)	0.213 ± 0.005	0.137	0.032	0.053	0.035	-0.043 ± 0.005
10 RHS (4)	0.175 ± 0.003	0.121	0.032	0.050	0.029	-0.057 ± 0.003
10^3 LHS (5)	0.92 ± 0.07	0.36	0.00	0.56	-0.01	0.00 ± 0.07
10^3 RHS (5)	1.18 ± 0.04	0.42	0.00	0.57	0.03	0.15 ± 0.04

	[CGL]	two-flavour	remainder
		[CGL]	
10 LHS (4)	0.213 ± 0.005	0.204	0.009 ± 0.005
10 RHS (4)	0.175 ± 0.003	0.176	-0.001 ± 0.003
10^3 LHS (5)	0.92 ± 0.07	1.00	-0.08 ± 0.07
10^3 RHS (5)	1.18 ± 0.04	1.15	0.04 ± 0.04

• Rel (4) and (5) \rightarrow ok at 2-sigma level

πK scattering: generalities

- $T^{I}(s, t, u) =$ scattering amplitude in isospin channel $I = \frac{1}{2}, \frac{3}{2}$
- As for the $\pi\pi$ scattering, it's possible to define scattering lengths $a_{\ell}^{I}, b_{\ell}^{I}$:

$$T^{I}(s,t,u) = 16\pi \sum_{\ell=0}^{+\infty} (2\ell+1) P_{\ell}(\cos\theta) t^{I}_{\ell}(s)$$

Near threshold $\rightarrow t^{I}_{\ell} = \frac{1}{2} \sqrt{s} q^{2\ell}_{\pi K} (a^{I}_{\ell} + b^{I}_{\ell} q^{2}_{\pi K} + \mathcal{O}(q^{4}_{\pi K}))$
$$q^{2}_{\pi K} = \frac{s}{4} \left(1 - \frac{(m_{K} + m_{\pi})^{2}}{s} \right) \left(1 - \frac{(m_{K} - m_{\pi})^{2}}{s} \right)$$
$$t = -2q^{2}_{\pi K} (1 - \cos\theta), \quad u = -s - t + 2m^{2}_{K} + 2m^{2}_{\pi}$$

• Again we studied only those scattering lengths where a dependence on the C_i shows up \rightarrow 14 threshold parameters

πK scattering: relations

On the other hand the isospin amplitudes T^I(s, t, u) are written in terms of the crossing symmetric and antisymmetric amplitudes T[±](s, t, u) which can be expanded around t=0, s=u (ν = s-u/4m_κ) (subthreshold expansion):

$$T^{+}(s,t,u) = \sum_{i,j=0}^{\infty} c_{ij}^{+} t^{i} \nu^{2j} \qquad T^{-}(s,t,u) = \sum_{i,j=0}^{\infty} c_{ij}^{-} t^{i} \nu^{2j+1}$$

where $16\rho^2 \left[c_{\overline{20}}\right]_{C_i} = 3 \left[c_{\overline{01}}\right]_{C_i}$, $\rho = m_K/m_\pi$ and c_{ij} are expressed in unit of $m_\pi^{2i+2j+1}$

- \rightarrow 9 independent subthreshold parameters.
- \Rightarrow 5 relations between the scattering lengths holding both at p^6 and at p^4 : no dependence of the L_i at NLO.

For simplicity we introduce the notation

$$\begin{aligned} a_{\ell}^{-} &= a_{\ell}^{1/2} - a_{\ell}^{3/2} \qquad b_{\ell}^{-} = b_{\ell}^{1/2} - b_{\ell}^{3/2} \\ a_{\ell}^{+} &= a_{\ell}^{1/2} + 2a_{\ell}^{3/2} \qquad b_{\ell}^{+} = b_{\ell}^{1/2} + 2b_{\ell}^{3/2} \end{aligned}$$

$$\left(\rho^{4} + 3\rho^{3} + 3\rho + 1\right) \left[a_{1}^{-}\right]_{C_{i}} = 2\rho^{2} \left(\rho + 1\right)^{2} \left[b_{1}^{-}\right]_{C_{i}} - \frac{2}{3}\rho \left(\rho^{2} + 1\right) \left[b_{0}^{-}\right]_{C_{i}} + \frac{1}{2\rho} \left(\rho^{2} + \frac{4}{3}\rho + 1\right) \left(\rho^{2} + 1\right) \left[a_{0}^{-}\right]_{C_{i}}$$

$$(6)$$

$$5\left(\rho^{2}+1\right)\left[a_{2}^{-}\right]_{C_{i}}=\left[a_{1}^{-}\right]_{C_{i}}+2\rho\left[b_{1}^{-}\right]_{C_{i}}$$

$$(7)$$

$$5(\rho+1)^{2} \left[b_{2}^{-}\right]_{C_{i}} = \frac{(\rho-1)^{2}}{\rho^{2}} \left[a_{1}^{-}\right]_{C_{i}} - \frac{\rho^{4} + \frac{2}{3}\rho^{2} + 1}{4\rho^{4}} \left[a_{0}^{-}\right]_{C_{i}} + \frac{\rho^{2} - \frac{2}{3}\rho + 1}{2\rho^{2}} \left[b_{0}^{-}\right]_{C_{i}}$$
(8)

All quantities are in the units of powers of m_{π^+}

	[BDM]	NLO	NLO	NNLO	NNLO	remainder
		1-loop	LECs	2-loop	1-loop	
LHS (6)	5.4 ± 0.3	0.16	0.97	0.77	-0.11	0.6 ± 0.3
RHS (6)	6.9 ± 0.6	0.42	0.97	0.77	-0.03	1.8 ± 0.6
10 LHS (7)	0.32 ± 0.01	0.03	0.12	0.11	0.00	0.07 ± 0.01
10 RHS (7)	0.37 ± 0.01	0.02	0.12	0.10	-0.01	0.14 ± 0.01
100 LHS (8)	-0.49 ± 0.02	0.08	-0.25	-0.17	0.05	-0.21 ± 0.02
100 RHS (8)	-0.85 ± 0.60	0.03	-0.25	0.11	-0.03	-0.71 ± 0.60

- Rel (6) \rightarrow ok at 2 sigma
- Rel $(7) \rightarrow ok$ with a theoretical error about half the NNLO contribution
- Rel (8) \rightarrow ok but large uncertainty

$$7\left(\rho^{2}+1\right)\left[a_{3}^{-}\right]_{C_{i}} = \left[a_{2}^{-}\right]_{C_{i}}+2\rho\left[b_{2}^{-}\right]_{C_{i}}$$
(9)

$$7\left[a_{3}^{+}\right]_{C_{i}} = \frac{1}{2\rho}\left[a_{2}^{+}\right]_{C_{i}}-\left[b_{2}^{+}\right]_{C_{i}}+\frac{1}{5\rho}\left[b_{1}^{+}\right]_{C_{i}}-\frac{1}{60\rho^{3}}\left[a_{0}^{+}\right]_{C_{i}}$$
(10)

All quantities are in the units of powers of m_{π^+}

	[BDM]	NLO	NLO	NNLO	NNLO	remainder
		1-loop	LECs	2-loop	1-loop	
100 LHS (9)	0.13 ± 0.01	0.04	0.00	0.01	0.03	0.05 ± 0.01
100 RHS (9)	0.01 ± 0.01	0.01	0.00	0.00	0.00	-0.01 ± 0.01
10^3 LHS (10)	0.29 ± 0.05	0.09	0.00	0.06	0.01	0.13 ± 0.03
10^3 RHS (10)	0.31 ± 0.07	0.03	0.00	0.06	0.05	0.17 ± 0.07

• Rel (9) \rightarrow ChPT seems to underestimate a_3^-

$\pi\pi$ scattering and πK scattering

Considering $\pi\pi$ and πK scattering together two more relations appear. These are due to the following identities:

$$[b_5]_{C_i} = [c_{30}^+]_{C_i} + \frac{3}{4\rho} [c_{20}^-]_{C_i}, \qquad [b_6]_{C_i} = \frac{1}{4\rho} [c_{20}^-]_{C_i} + \frac{1}{16\rho^2} [c_{11}^+]_{C_i}$$

which in terms of the threshold parameters read

$$6 \left[a_3^1 \right]_{C_i} = (1+\rho) \left[a_3^+ + 3a_3^- \right]_{C_i}$$
(11)

$$3\left[(1+\rho)^{2}\left[b_{2}^{2}\right]_{C_{i}}+7\left(1-\rho\right)^{2}\left[a_{3}^{1}\right]_{C_{i}}\right] = (1+\rho)\left[7\left(1-4\rho+\rho^{2}\right)\left[a_{3}^{-}\right]_{C_{i}}+\left[a_{2}^{+}+2\rho b_{2}^{+}\right]_{C_{i}}\right]$$
(12)

All quantities in units of powers of m_{π^+}

	[CGL]	NLO	NLO	NNLO	NNLO	remainder
	[BDM]	1-loop	LECs	2-loop	1-loop	
10^3 LHS (11)	0.34 ± 0.01	0.12	0.00	0.16	0.00	0.05 ± 0.01
10^3 RHS (11)	0.38 ± 0.03	0.12	0.00	0.05	0.04	0.16 ± 0.03
10 LHS (12)	-0.13 ± 0.01	-0.12	0.00	-0.05	0.02	0.01 ± 0.01
10 RHS (12)	-0.09 ± 0.02	-0.05	0.00	-0.02	-0.01	-0.01 ± 0.02

• Rel (11) $\rightarrow a_3^-$ appears similar discrepancy seen in Kampf, Moussallam Eur. Phys. J. C. 47 (2006) 723 (see talk by Bijnens)

I. Jemos (Lund University)

Determination of LECs at NNLO

Berne, 9/7/2009 16 / 21

$K_{\ell 4}$: generalities and relation

- In the transition amplitude 4 form factors appear: F, G, H, R (R in K_{e4} is suppressed \rightarrow only in $K_{\mu4}$)
- Using partial wave expansion and neglecting *d* wave terms (10 observables):

$$F = f_s + f'_s q^2 + f''_s q^4 + f'_e s_e / 4m_\pi^2 + f_t \sigma_\pi X \cos \theta + \dots ,$$

$$G_p = g_p + g'_p q^2 + g''_g q^4 + g'_e s_e / 4m_\pi^2 + g_t \sigma_\pi X \cos \theta + \dots$$

 $s_{\pi}(s_e) =$ invariant mass of dipion (dilepton) $q^2 = (s_{\pi}/(4m_{\pi}^2) - 1)$

• 1 relation between πK scattering and K_{e4} observables:

$$\sqrt{2} \left[f_s'' \right]_{C_i} = 64 \rho F_\pi \left[c_{30}^+ \right]_{C_i}$$

in terms of the πK threshold parameters reads

$$\sqrt{2} \left[f_s'' \right]_{C_i} = 32\pi \frac{\rho}{1+\rho} F_{\pi} \left[\frac{35}{6} \left(2+\rho+2\rho^2 \right) \left[a_3^+ \right]_{C_i} - \frac{5}{4} \left[a_2^+ + 2\rho b_2^+ \right]_{C_i} \right]$$

All quantities are in units of powers of $m_{\pi^{+}}$,

$K_{\ell 4}$: numerics

(see talk by Bijnens)

	[BDM], [E865],	NLO	NLO	NNLO	NNLO	remainder
	[NA48/2]	1-loop	LECs	2-loop	1-loop	
LHS (17)	-0.73 ± 0.10	-0.23	0.00	-0.15	-0.05	-0.29 ± 0.10
RHS (17)	0.50 ± 0.07	0.19	0.00	0.10	0.03	0.18 ± 0.07

3 Summary and Future Steps

- many observables at NNLO, depending on many correlated LECs
- we found relations among observables not depending on the NNLO constants (and most of them not depending on the NLO either) → a way to check ChPT
- although many relations work well, results for $K_{\ell 4}$ and πK scattering show discrepancies: further investigation needed
- arXiv:0906.3118 [hep-ph]

Future steps:

- new fit of the L_i with a better treatment of the C_i and using new exp data available, dispersive analysis and lattice results (masses, scalar form factors)
- include corrections (e.g. isospin breaking)

Status of the L_i fit

PRELIMINARY!!!!

- Program for fitting (Minuit) almost ready (pion scalar radius, $\pi\pi$ and πK scattering observables now included)
- *C_i* obtained through Resonance Estimates (Vector, Scalar, PseudoScalar) (see Amoros, Bijnens, Talavera, Nucl. Phys. B 602 (2001) 87)

	fit 10 iso	NA48	F_K/F_{π}	All
$10^{3}L_{1}^{r}$	0.40 ± 0.12	0.98	0.97	0.99 ± 0.13
$10^{3}L_{2}^{r}$	0.76 ± 0.12	0.78	0.79	0.60 ± 0.22
$10^{3}L_{3}^{\overline{r}}$	-2.40 ± 0.37	-3.14	-3.12	-3.07 ± 0.59
$10^{3}L_{4}^{r}$	$\equiv 0$	$\equiv 0$	$\equiv 0$	0.65 ± 0.64
$10^{3}L_{5}^{r}$	0.97 ± 0.11	0.93	0.72	0.53 ± 0.10
$10^{3}L_{6}^{r}$	$\equiv 0$	$\equiv 0$	$\equiv 0$	0.07 ± 0.65
$10^{3}L_{7}^{r}$	-0.30 ± 0.15	-0.30	-0.26	-0.21 ± 0.15
$10^{3}L_{8}^{r}$	0.61 ± 0.20	0.59	0.48	0.37 ± 0.17
χ^2 (dof)	0.25(1)	0.17(1)	0.19(1)	0.78 (4)

- NA48 \rightarrow NA48 exp data. No change in the fit including curvature: $f_s'' = -0.90$ (exp value: $f_s'' = -1.58 \pm 0.064$)
- $F_K/F_{\pi} = 1.19$ (value of L_5^r changes)
- All \rightarrow add $a_0^0, a_0^2, a_0^{1/2}, a_0^{3/2}$, scalar pion radius