A New Dispersive Analysis of $\eta \rightarrow 3\pi$

Stefan Lanz

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics, Bern University

Chiral Dynamics 2009, Bern

⁶ UNIVERSITÄT BERN

Work in collaboration with G. Colangelo and E. Passemar

A New Dispersive Analysis of $\eta \rightarrow 3\pi$

Stefan Lanz, Bern University

Chiral Dynamics 2009

- Motivation

3 Preliminary Results

Stefan Lanz, Bern University

Why $\eta \rightarrow 3\pi$?

• $\eta
ightarrow 3\pi$ decays allow for a precise determination of the quark

mass ratio
$$Q^2=rac{m_s^2-\hat{m}^2}{m_d^2-m_u^2},$$
 because of $\Gamma_{\eta
ightarrow 3\pi}~\sim |A|^2\sim Q^{-4}$

From Kaon mass splitting:

$$Q^2 = rac{m_K^2}{m_\pi^2} rac{m_K^2 - m_\pi^2}{(m_{K^0}^2 - m_{K^+}^2)_{QCD}}$$

[Gasser & Leutwyler '84]

Why dispersion relations ?

Chiral perturbation theory series converges rather slowly:

- tree level: $\Gamma = 66 \text{ eV}$ [Cronin '67, Osborn & Wallace '70]
- one-loop: Γ = 160 eV
 [Gasser & Leutwyler '84]
- experiment: $\Gamma = 295 \text{ eV}$ [PDG '08]
- Mainly due to final state rescattering ⇒ can be analysed by dispersion relations

A New Dispersive Analysis of $\eta \rightarrow 3\pi$

Why do it again ?

This has been done before

[Kambor, Wiesendanger & Wyler '96, Anisovich & Leutwyler '96]

• Better $\pi\pi$ phase shifts

[Ananthanarayan et al. '01, Colangelo et al. '01, Descotes-Genon et al. '01, García-Martín et al. '09]

- New measurements by KLOE, MAMI and WASA
- New two-loop analysis in χPT

[Bijnens & Ghorbani '07]

Stefan Lanz, Bern University

Amplitude

•
$$\langle \pi^0 \pi^+ \pi^-, \mathsf{out} | \eta \rangle = i(2\pi)^4 \delta^4 (p_\eta - p_{\pi^+} - p_{\pi^-} - p_{\pi^0}) A(s, t, u)$$

•
$$A(s,t,u) = -\frac{1}{Q^2} \frac{m_K^2(m_K^2 - m_\pi^2)}{2\sqrt{3}m_\pi^2 F_\pi^2} M(s,t,u)$$

- I only talk about charged channel
- Neutral channel: $\overline{A}(s, t, u) = A(s, t, u) + A(t, u, s) + A(u, s, t)$

Stefan Lanz, Bern University

Chiral Dynamics 2009

Dispersion relations

Early work

[e.g. Khuri & Treiman '60]

• We use M(s, t, u) = $M_0(s) + (s - u)M_1(t) + (s - t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$

[Fuchs, Sazdijan & Stern '93, Anisovich & Leutwyler '96]

- Exact, if Im $t_{\ell}(s) = 0$, for $\ell \geq 2$
- Chiral counting: Im $t_{\ell}(s) = \mathcal{O}(p^8), \ell \geq 2$
- · Functions of only one variable with only right hand cut

Equations for the M_{l}

From unitarity:

disc $M_l(s) = \theta(s - 4m_\pi^2) \left\{ M_l(s) + \hat{M}_l(s) \right\} \sin \delta_l(s) e^{-i\delta_l(s)}$

- \hat{M}_l are angular averages of the other M_l
- Cauchy representation for $M_l(s)/\Omega_l(s)$ leads to integral equations
- Omnès function:

$$\Omega_{l}(s) = \left(M_{l} \text{ with } \hat{M}_{l} = 0\right) = \exp\left\{\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\delta_{l}(s')}{s'(s'-s)}\right\}$$

1

Equations for the M_l

Similarly for M_1 and M_2 .

- Solve equations numerically by iterative procedure.
- Determine 4 subtraction constants by matching to one-loop χPT (Adler zero)

Re $M_0(s)$

Dalitz plot for $\eta \to \pi^0 \pi^+ \pi^-$

Stefan Lanz, Bern University

Chiral Dynamics 2009

Iteration Steps

Future improvements

- $m_{\pi^+} m_{\pi^0}$ effects
- Electromagnetic corrections
- Inelasticity
- · Use experimental data to determine subtraction constants

[KLOE '07, MAMI '08, WASA '08]

[Ditsche, Kubis, Meißner '08]

[Kupśc, Rusetsky & Gullström '08, Kubis & Schneider '09]

- Imaginary parts of D and higher waves
- Error Analysis

- Appendix

Appendix

Dispersion Integrals for the M_I

$$\begin{split} \mathcal{M}_{0}(s) &= \Omega_{0}(s) \left\{ \alpha_{0} + \beta_{0}s + \gamma_{0}s^{2} \\ &+ \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\sin \delta_{0}(s')\hat{\mathcal{M}}_{0}(s')}{|\Omega_{0}(s')|(s'-s-i\epsilon)} \right\} \\ \mathcal{M}_{1}(s) &= \Omega_{1}(s) \left\{ \beta_{1}s + \frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_{1}(s')\hat{\mathcal{M}}_{1}(s')}{|\Omega_{1}(s')|(s'-s-i\epsilon)} \right\} \end{split}$$

$$M_2(s) = \Omega_2(s) rac{s^2}{\pi} \int_{4m_\pi^2}^{\infty} rac{ds'}{s'^2} rac{\sin \delta_2(s') \hat{M}_2(s')}{|\Omega_2(s')|(s'-s-i\epsilon)}$$

Stefan Lanz, Bern University

- Appendix

R

•
$$R = \frac{m_s - \hat{m}}{m_d - m_u} = \frac{2}{m_s / \hat{m} + 1} Q^2$$

• With $m_s/\hat{m} = 24.4$ and Q = 22.3, we get $R \approx 39$

[Leutwyler '96]