Pion reaction with few-N systems

Vadim Baru

Forschungszentrum Jülich, Institut für Kenphysik (Theorie), D-52425 Jülich, Germany

Chiral Dynamics 2009, Bern, 6 July 2009
in collaboration with E. Epelbaum, J. Haidenbauer, C. Hanhart, A. Kudryavtsev, V. Lensky, U.-G. Meißner and A. Filin

$N N \rightarrow N N \pi$. Motivation

π production in $N N$ collisions

- test of ChPT in the process with large momentum transfer [This talk]
- determination of LECs $\left((N \bar{N})^{2} \pi\right.$ contact term) [This talk]
- direct connection to few-body forces, weak processes, pion photoproduction,...
- key to dispersive corrections to πd scattering: $\pi d \rightarrow N N \rightarrow \pi d$ (our work 2007)
- accurate data are available due to COSY; IUCF; TRIUMF, Uppsala
- necessary for studying isospin violation (IV) - direct access to QCD parameters
$p n \rightarrow d \pi^{0}$ [This talk],Opper et al. (2003), v.Kolck et al (2000), Bolton and Miller (2 days ago)
$d d \rightarrow \alpha \pi^{0}$ —Stephenson et al. (2003), Gårdestig et al. (2004); Nogga et al.(2006), Fonseca et al.(3 days ago)

Power Counting

ChPT treatment (Weinberg 1992)

- expand the transition operator:
- convolute with the (non-perturbative) wave functions

A is perturbative
$\Psi_{i / f}$ are treated non-perturbatively

Relevant scales in the production operator A
small scale: $p \simeq \sqrt{m_{\pi} M_{N}}$ - initial NN momentum in c.m.s
$\underline{\text { s-wave pion: Cohen et al. (1996); Hanhart et al. (2000) }}$

$$
\chi \sim \frac{p}{M_{N}} \sim \sqrt{\frac{m_{\pi}}{M_{N}}}
$$

p-wave pion: $k_{\pi} \leq m_{\pi}$

$$
\chi \sim \frac{k_{\pi}}{p} \sim \frac{p}{M_{N}} \sim \sqrt{\frac{m_{\pi}}{M_{N}}}
$$

$p p \rightarrow d \pi^{+}, s$-wave pion production (our work 2006)

NLO contribution

$$
A_{d \pi^{+}}^{a+\mathrm{b}+\mathrm{c}+\mathrm{d1}(\mathrm{irr})+\mathrm{d} 2(\mathrm{irr})}=\frac{g_{A}^{3}|\vec{q}|}{256 f_{\pi}^{5}}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot \frac{\vec{q}}{2}\left(-2+3+0-\frac{1}{4}-\frac{3}{4}\right)=0
$$

Theoretical uncertainty is $\mathcal{O}\left(\frac{m_{\pi}}{M_{N}}\right) \sim 25-30 \%$.
$\rightarrow N^{2} L O$ calculation is necessary to reduce the uncertainty - important for IV.
$\rightarrow N^{2} L O p p \rightarrow p p \pi^{0}$

$(N \bar{N})^{2} \pi$ LEC

Low-momentum transfer: $N N \rightarrow d e \nu, \pi d \rightarrow \gamma N N, \gamma d \rightarrow \pi N N, p d \rightarrow p d, \ldots$ Large-momentum transfer: $N N \rightarrow N N \pi$
Nakamura (2008): $p p \rightarrow d e^{+} \nu, p p \rightarrow p n \pi^{+}$
Conclusion: failure of simultaneous description

$(N \bar{N})^{2} \pi$ LEC d in $N N \rightarrow N N \pi$

$$
\mathrm{pp} \rightarrow \mathrm{~d} \pi^{+}, \mathrm{pp} \rightarrow \mathrm{pn} \pi^{+} \quad \mathrm{pn} \rightarrow \mathrm{pp} \pi^{-}
$$

Description with the same LEC d - non-trivial test of consistency
Why do we expect this to work?
$\Psi_{q}(r=0)=\left(1+M_{N} \int_{0}^{\infty} d^{3} p \frac{T(p, q, q)}{q^{2}-p^{2}+i 0}\right)=\operatorname{Cexp}\left\{\frac{1}{\pi} \int_{4 m_{N}^{2}}^{\infty} d s^{\prime} \frac{\delta_{N N}\left(s^{\prime}\right)}{s^{\prime}-s(q)+i 0}\right\}$

- energy dependence of $\Psi_{q}(0)$ - model independent
- C-model dependent
- $C_{1 S_{0}}$ and $C_{3 S_{1}}$ are absorbed ind

p -wave pion production mechanism

$\mathrm{d}:{ }^{1} S_{0} \rightarrow{ }^{3} S_{1} p$ in $p p \rightarrow p n \pi^{+} / d \pi^{+}$
d: ${ }^{3} S_{1} \rightarrow{ }^{1} S_{0} p$ in $p n \rightarrow p p \pi^{-}$

- $\mathrm{d}=\mathrm{d}(\Lambda)$ - depends on the regularization scheme and type of NN interaction
- d absorbs the short-range part of the production operator

$$
\begin{gathered}
A_{c_{i}} \sim\left(\frac{c_{3}}{2}+c_{4}+\frac{1}{4 M_{N}}\right) \frac{\left(\vec{p}-\vec{p}^{\prime}\right)^{2}}{\left(\vec{p}-\vec{p}^{\prime}\right)^{2}+m_{\pi}^{2}} \rightarrow \text { const }+O\left(N^{4} L O\right) \\
\text { LEC d avsorbs } A_{c_{i}}
\end{gathered}
$$

$N N \rightarrow N N \pi$, Results

$N N \rightarrow N N \pi$, Results

New measurement of $p n \rightarrow p p \pi^{-}$at low energies (ANKE at COSY 2009)
Positive $d \simeq 3$ is clearly preferred

$p p \rightarrow p n \pi^{+}$, Results

$$
\begin{aligned}
\frac{d \sigma}{d \Omega}=C_{0} & +C_{2} P_{2}(\cos \theta)+\ldots \\
C_{0} & =\frac{\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}}{4}+C_{0}^{l=1} \\
C_{2} & =\frac{\left|a_{2}\right|^{2}}{4}-\frac{1}{\sqrt{2}} \operatorname{Re}\left[a_{0} a_{2}^{*}\right]
\end{aligned}
$$

$$
\begin{aligned}
& a 0:{ }^{1} S_{0} \rightarrow^{3} S_{1} p \\
& a 2:{ }^{1} D_{2} \rightarrow^{3} S_{1} p \\
& \text { a1: }{ }^{3} P_{1} \rightarrow^{3} S_{1} s \\
& \text { IUCF, Flammang et al. (1998) }
\end{aligned}
$$

$$
A_{y}\left(90^{\circ}\right)\left(C_{0}-\frac{C_{2}}{2}\right)=\frac{1}{4}\left(\sqrt{2} \operatorname{Im}\left[a_{1} a_{0}^{*}\right]+\operatorname{Im}\left[a_{1} a_{2}^{*}\right]\right)
$$

- Again positive $d \simeq 3$ is preferred
- influence of Pp states needs to be understood

$p p \rightarrow p n \pi^{+}$, Partial wave analysis Flammang et al (1998)

Drawbacks of PWA

- old $p p \rightarrow p p \pi^{0}$ data were used to extract $C_{0}^{l=1}$. New data (COSY 2003) are 50% larger!
- $C_{0}^{l=1}$ is not corrected for the difference between $p p$ and $p n$ interactions at low energies: $a_{p p} \simeq 7.8 \mathrm{fm} \ll a_{p n} \simeq 23.7 \mathrm{fm}$ Integrated ratio of the Jost functions:

$$
R=\frac{\int d \tau_{3}\left|F_{p n}(p)\right|^{2}}{\int d \tau_{3}\left|F_{p p}(p)\right|^{2}} \simeq 1.5 \quad \text { for } \eta=0.22
$$

- No Pp states

Nakamura's result: failure of bridging programm between pp fusion and $N N \pi$

Conclusion is based on wrong PWA!

$N N \rightarrow N N \pi$, Isospin Conserving part. Conclusion

s-wave production.

- NLO calculation gets a bulk of data
- N^{2} LO is needed to reduce the uncertainty in $p p \rightarrow d \pi^{+}$and understand $p p \rightarrow p p \pi^{0}$ (Myhrer et al. (2008))
p-wave production, $\mathrm{N}^{2} \mathrm{LO}$ calculation
- stydying different channels of $N N \pi$ simultaneousely - non-trivial test for LEC $(N \bar{N})^{2} \pi$ in different kinematical regimes
- consistent description of all channels with the same LEC is possible!
- we think all reactions with different kinematics connected by $(N \bar{N})^{2} \pi$ counter term can be described consistently

Future plans
$N N \rightarrow N N \pi+p p \rightarrow d e^{+} \nu+\cdots$ within the same framework

CSB effects in $p n \rightarrow d \pi^{0}$

$$
\frac{d \sigma}{d \Omega}(\theta)=C_{0}+C_{1} P_{1}(\cos \theta)+C_{2} P_{2}(\cos \theta)+\ldots
$$

$$
\frac{d \sigma}{d \Omega}(\theta) \neq \frac{d \sigma}{d \Omega}(\pi-\theta)
$$

experiment: $A_{f b}=(17.2 \pm 8 \pm 5.5) 10^{-4}$ (Opper, TRIUMF (2003))
theory: (v.Kolck et al. (2000), Bolton, Miller (2009))

- not complete LO calculation
- strong overestimation of the data: $A_{f b}=(50 \pm 10) 10^{-4}$ (Miller et al (2006))
our study: (Filin et al., (2009)) - complete LO (not complete N^{2} LO calculation).

$A_{f b}=(19 \pm 10) 10^{-4}$ (current study), but still complete N^{2} LO is nesessary

