# Status of the Hadronic Light by Light Contribution to Muon g-2

#### Joaquim Prades CAFPE and Universidad de Granada



Sixth Workshop on Chiral Dynamics, 9 July 2009, Bern



Status of the Hadronic Light by Light Contribution to Muon q - 2 - p. 1/2



#### ► Introduction

#### ► Introduction

➡ "Old" Calculations: 1995-2001

- ► Introduction
- → "Old" Calculations: 1995-2001
- ► New Short-Distance Constraints: 2003-2004

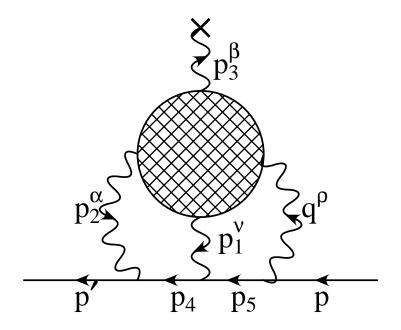
- ► Introduction
- → "Old" Calculations: 1995-2001
- ► New Short-Distance Constraints: 2003-2004
- ► Comparison

- ► Introduction
- → "Old" Calculations: 1995-2001
- ► New Short-Distance Constraints: 2003-2004
- ► Comparison
- ► Conclusions and Prospects: 2009

- ► Introduction
- → "Old" Calculations: 1995-2001
- ► New Short-Distance Constraints: 2003-2004
- ► Comparison
- ➤→ Conclusions and Prospects: 2009
- ► Corolary: HLbL to electron g-2

## Introduction

Hadronic light-by-light contribution to g-2



$$\mathcal{M} = |e|^{7} A_{\beta} \int \frac{\mathrm{d}^{4} p_{1}}{(2\pi)^{4}} \int \frac{\mathrm{d}^{4} p_{2}}{(2\pi)^{4}} \frac{1}{q^{2} p_{1}^{2} p_{2}^{2} (p_{4}^{2} - m^{2}) (p_{5}^{2} - m^{2})} \times \frac{\Pi^{\rho\nu\alpha\beta}(p_{1}, p_{2}, p_{3})}{u(p')\gamma_{\alpha}(\not p_{4} + m)\gamma_{\nu}(\not p_{5} + m)\gamma_{\rho}u(p)}$$

## Introduction

#### Need

$$\begin{split} \Pi^{\rho\nu\alpha\beta}(p_1,p_2,p_3) &= i^3 \int \mathrm{d}^4x \int \mathrm{d}^4y \int \mathrm{d}^4z \, \exp^{i(p_1\cdot x + p_2\cdot y + p_3\cdot z)} \times \\ &\times \langle 0|T[V^{\rho}(0)V^{\nu}(x)V^{\alpha}(y)V^{\beta}(z)]|0\rangle \end{split}$$

with  $V^{\mu}(x) = [\overline{q} \, \widehat{Q} \gamma^{\mu} q](x)$  and  $\widehat{Q} = \frac{1}{3} \text{diag}(2, -1, -1)$ full four-point function with  $p_3 \to 0$  •

Using current conservation at  $p_3 = 0$ 

$$\Pi^{\rho\nu\alpha\lambda}(p_1, p_2, p_3) = -p_{3\beta} \frac{\delta\Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}$$

one just needs derivatives at  $p_3 = 0$  •

★ Many scales involved: Impose low energy and several OPE limits <a> Not full first principle calculation at present</a>

(Two lattice groups just starting: Not clear final uncertainty) •

Large  $N_c$  and CHPT counting:

Organizes different degrees of freedom contributions • E. de Rafael

- Goldstone boson exchange:  $\mathcal{O}(N_c)$  and  $\mathcal{O}(p^6)$  •
- Quark Loop and non-Goldstone boson exchange:  $\mathcal{O}(N_c)$  and  $\mathcal{O}(p^8)$
- Goldstone bosons Loop:  $\mathcal{O}(1)$  in  $1/N_c$  and  $\mathcal{O}(p^4)$  •

## Introduction

Based on this organization:

- Two <u>full calculations</u>
  J. Bijnens, E. Pallante, J.P. (BPP)
  M. Hayakawa, T. Kinoshita, A. Sanda (HKS)
- Dominant pseudo-scalar exchange: Extensive analytic analysis
   M. Knecht, A. Nyffeler (KN)

Found sign mistake ✓ M. Knecht, A. Nyffeler, M. Perrottet, E. de Rafael

## Introduction

★ New four-point form factor short-distance constraint:

K. Melnikov, A. Vainshtein (see also M. Knecht, S. Peris, M. Perrottet, E. de Rafael)

Model:

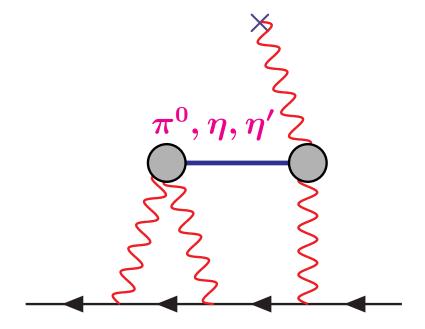
Full light-by-light saturated by pseudo-scalar and pseudo-vector pole exchanges •

Very recently, A. Nyffeler used an  $\pi^0 \gamma^* \gamma^*$  off-shell form factor model • (see next talk)

First step, one needs more work to have the full light-by-light •

#### "Old" Calculations: Pseudo-Scalar Exchange

Dominant contribution 🍄 pseudo-scalar exchange •



Nambu-Goldstone  $\pi^0$  makes special enhacement at low energy

$$a(\pi^{0}) = \left(\frac{\alpha}{\pi}\right)^{3} N_{c} \frac{m^{2} N_{c}}{48\pi^{2} f_{\pi}^{2}} \left[\ln^{2} \frac{M_{\rho}}{m_{\pi}} + \mathcal{O}(\ln \frac{M_{\rho}}{m_{\pi}}) + \mathcal{O}(1)\right]$$

M. Knecht, A. Nyffeler, M. Perrottet, E. de Rafael

Here, I discuss work in J. Bijnens, E. Pallante, J.P. • We used a variety of  $\pi^0 \gamma^* \gamma^*$  form factors

$$\mathcal{F}^{\mu\nu}(p_1, p_2) = \frac{N_c}{6\pi} \frac{\alpha}{f_\pi} i\varepsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \underline{\mathcal{F}}(p_1^2, p_2^2)$$

fulfilling as many as possible QCD constraints  $\bullet$  (Short-distance, data, U<sub>A</sub>(1) normalization and slope at the origin). In particular,

$$\mathcal{F}(Q^2, Q^2) \longrightarrow \frac{A}{Q^2}$$
$$\mathcal{F}(Q^2, 0) \longrightarrow \frac{B}{Q^2}$$

for  $Q^2$  Euclidean and very large

<u>All</u> form factors we used <u>converge</u> for  $\mu \sim (2-4)$  GeV and the <u>numerical difference</u> between them is <u>small</u>

Somewhat different  $\pi^0 \gamma^* \gamma^*$  form factors used in M. Hayakawa, T. Kinoshita, A. Sanda and M. Knecht, A. Nyffeler •

Results agree very well (after correcting a mistake in the sign of the phase space) •

|  |     | $10^{10} \times a_{\mu}$ |
|--|-----|--------------------------|
|  | BPP | (8.5 ± 1.3)              |
|  |     | $(8.3\pm0.6)$            |
|  | KN  | $(8.3\pm1.2)$            |

#### "Old" Calculations: Pseudo-Vector Exchange

Need  $a_1^0 \gamma \gamma^*$  and  $a_1^0 \gamma^* \gamma^*$  form factors ullet

 $\Rightarrow$  related to  $\pi^0 \gamma \gamma^*$  and  $\pi^0 \gamma^* \gamma^*$  by anomalous Ward identities  $\checkmark$ 

Pseudo-vector exchange

|     | $10^{10} 	imes a_{\mu}$ |
|-----|-------------------------|
| BPP | $(0.25\pm0.10)$         |
| HKS | $(0.17\pm0.10)$         |

Need  $S^0\gamma\gamma^*$  and  $S^0\gamma^*\gamma^*$  form factors ullet

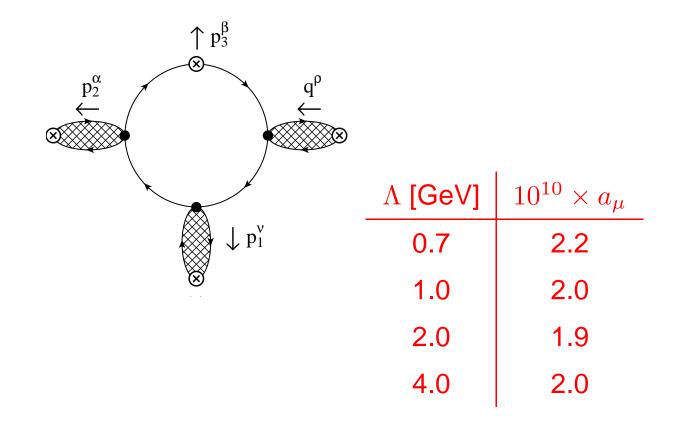
They are constrained by CHPT at  $\mathcal{O}(p^4)$ :  $L_i$ 's reproduced  $\checkmark$ 

Within ENJL: <u>Ward identities</u> impose relations between Quark loop and Scalar exchange •

$$a_{\mu}(\text{Scalar}) = -(0.7 \pm 0.2) \cdot 10^{-10}$$

Not included by M. Hayakawa, T. Kinoshita and A. Sanda nor by K. Melnikov and A. Vainshtein •

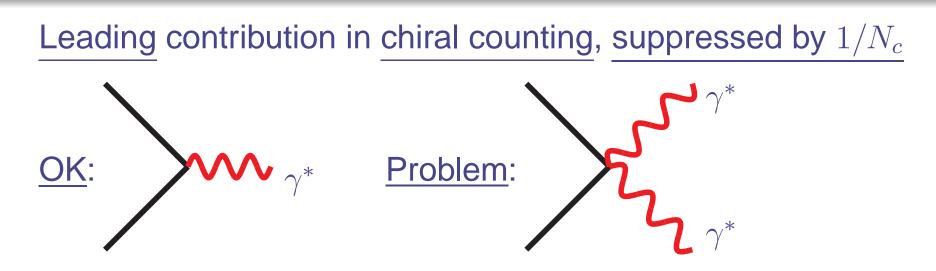
#### "Old" Calculations: Non-Meson Exchange "Quark-Loop"



• Low Energy (0 to  $\Lambda$ ): ENJL model •

- High Energy ( $\Lambda$  to  $\infty$ ): Bare heavy quark loop with  $m_Q = \Lambda$  •
- Numerical matching

#### "Old" Calculations: Pion- and Kaon-Loop



Low-intermediate energy (0.5-1.5) GeV  $\gamma^* \gamma^* \rightarrow \pi \pi$  data not available: <u>Models needed</u>

| Model for $\pi\pi\gamma(\gamma)$ form-factor | $10^{10} \times a_{\mu}$ |
|----------------------------------------------|--------------------------|
| Point-like                                   | -4.6                     |
| BPP (Full VMD)                               | -1.8                     |
| HKS (HGS)                                    | -0.4                     |

Kaon loop is much smaller:  $-0.05 \times 10^{-10}$  •

K. Melnikov and A. Vainshtein

<u>New short-distance</u> constraint on four-point function <u>form factor</u>

 $\langle 0|T[V^{\nu}(p_1)V^{\alpha}(p_2)V^{\rho}(-(p_1+p_2+p_3))]|\gamma(p_3\to 0)\rangle$ 

using <u>OPE</u> with  $-p_1^2 \simeq -p_2^2 >> -(p_1 + p_2)^2$  Euclidean and large,

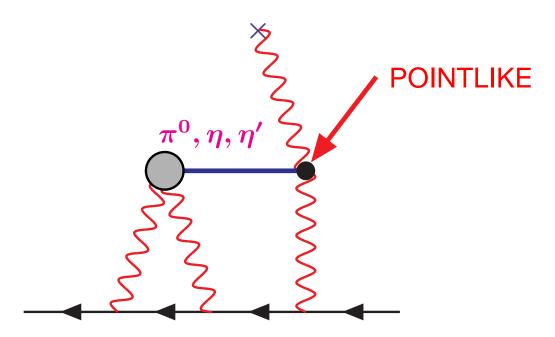
$$T[V^{\nu}(p_1)V^{\alpha}(p_2)] \sim \frac{1}{\hat{p}^2} \varepsilon^{\nu\alpha\mu\beta} \hat{p}_{\mu} \ [\overline{q} \,\widehat{Q}^2 \gamma_{\beta}\gamma_5 q](p_1+p_2)$$

with  $\hat{p} = (p_1 - p_2)/2 \simeq p_1 \simeq -p_2$ 

#### New OPE Constraint: Pseudo-scalar exchange

<u>New OPE</u> constraint <u>saturated</u> by <u>pseudo-scalar</u> exchange  $\Rightarrow$  Model uses a point-like vertex when  $p_3 \rightarrow 0$  •

Not all OPE constraints satisfied: Negligible numerically •



#### **New OPE Constraint: Axial-Vector exchange**

<u>Axial-Vector</u> exchange <u>depends very much</u> on the resonance mass mixing •

<u>K. Melnikov and A. Vainsthein</u>: Ideal mixing for  $f_1(1285)$  and  $f_1(1420)$  •

| Mass mixing                   | $10^{10} \times a_{\mu}$      |
|-------------------------------|-------------------------------|
| No New OPE (Nonet symmetry)   | $0.3\pm0.1$                   |
| M=1.3 GeV (Nonet symmetry)    | 0.7                           |
| $M=M_{\rho}$ (Nonet symmetry) | 2.8                           |
| Ideal mixing                  | $\textbf{2.2}\pm\textbf{0.5}$ |

## **Comparison:** Leading order in $N_c$

Leading order in  $N_c$ :

Quark Loop + Pseudo-Scalar + Pseudo-Vector + Scalar Exchanges •Total at  $\mathcal{O}(N_c)$  $10^{10} \times a_{\mu}$ BPP (Nonet symmetry) $(10.9 \pm 1.9) + -(0.7 \pm 0.1) = (10.2 \pm 1.9)$ HKS (Nonet symmetry) $(9.4 \pm 1.6) + ??Scalar??$ 

MV: <u>Hadronic model</u> saturated by <u>pole exchanges</u>: Cannot compare individual contributions •

Total at  $\mathcal{O}(N_c)$  $10^{10} \times a_{\mu}$ MV (Nonet symmetry) $(12.1 \pm 1.0) + ??$ Scalar??MV (Ideal mass mixing) $(13.6 \pm 1.5) + ??$ Scalar??

Masses produce main difference in pseudo-vector exchange •

# **Comparison:** NLO in $1/N_c$

Next to leading order in  $1/N_c$  contributions:

Charged Pion and Kaon Loop •

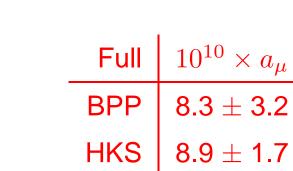
| Model for $\pi\pi\gamma(\gamma)$ form-factor | $10^{10} \times a_{\mu}$ |
|----------------------------------------------|--------------------------|
| BPP (Full VMD)                               | $-1.9\pm0.5$             |
| HKS (HGS)                                    | $-0.45\pm0.8$            |

K. Melnikov and A. Vainshtein: Full NLO in  $1/N_c$  estimate

 $a_{\mu} = (0 \pm 1) \cdot 10^{-10}$ 

## Comparison

**BPP vs HKS**:



No scalar exchange, different quark loop and different pion and kaon loops almost compensate •

# Comparison

#### BPP vs MV:

| Full | $10^{10} \times a_{\mu}$      |
|------|-------------------------------|
| BPP  | $\textbf{8.3}\pm\textbf{3.2}$ |
| MV   | $13.6\pm2.5$                  |

Several order  $1.5 \cdot 10^{-10}$  differences, in addition to new OPE effects •

- $-1.5 \cdot 10^{-10}$  (Different pseudo-vector mass mixing)
- $-0.7 \cdot 10^{-10}$  (No scalar exchange)
- $-1.9 \cdot 10^{-10}$  (No pion+kaon loop)
- $= -4.1 \cdot 10^{-10} \bullet$

Final [BPP-MV] difference:  $-5.3 \cdot 10^{-10} \bullet$ 

## **Conclusions and Prospects**

At present, large  $N_c$  results agree within 1  $\sigma$   $\checkmark$ 

$$a_{\mu}^{N_c,\text{lbl}} = (11.0 \pm 4.0) \times 10^{-10}$$

Based partly in this discussion: Recent new analysis of HLbL J.P., E. de Rafael and A. Vainshtein

 $\star 1/N_c$  expansion works reasonably well  $\checkmark$ 

★ Chiral enhancement factors demand more than the lightest Nambu-Golsdtone bosons ● Adding effects beyond leading order in  $1/N_c$ , in a conservative analysis, J.P., E. de Rafael and A. Vainshtein

 $\pi^{0}$ ,  $\eta$  and  $\eta'$  exchanges: (11.4 ± 1.3) × 10<sup>-10</sup> (includes non-meson exchange in ENJL case)

Scalar exchange :  $-(0.7 \pm 0.7) \times 10^{-10}$ 

Axial-vector exchange :  $(1.5 \pm 1.0) \times 10^{-10}$ 

Pion and kaon loops:  $-(1.9 \pm 1.9) \times 10^{-10}$ 

Charm quark loop:  $0.23 \times 10^{-10}$ 

★ Our final result is  $a_{\mu}^{\text{lbl}} = (10.5 \pm 2.6) \times 10^{-10}$ 

## **Conclusions and Prospects**

New muon g - 2 experiment goal  $\Leftrightarrow 1.6 \times 10^{-10}$ 

A <u>new full calculation</u> of  $a_{\mu}^{\text{lbl}}$  is <u>desirable and possible</u>: <u>Goal</u>: ~  $(1.5 - 2.0) \times 10^{-10}$  uncertainty in  $a_{\mu}^{\text{lbl}} \bullet$ 

★ At  $\mathcal{O}(N_c)$ : Study relevant reduced full four-point function with large  $N_c$  techniques •

First step: Analytic expressions

 Second step: Implement as many short-distance and low energy constraints as possible •

(possible problems J. Bijnens, E. Gámiz, E. Lipartia, J.P.)

 $\bigstar$  NLO in  $1/N_c$ : More theoretical work is clearly <u>needed</u> here

⇒ Goldstone bosons at one loop: Need  $\gamma^* \gamma^* \rightarrow \pi^+ \pi^-$  vertex • Experiment can help here •

Non-Goldstone bosons at one loop: Little is known •
 (recent related work by A. Pich, I. Rosell, J.J. Sanz-Cillero) •

More work is certainly needed •

<u>More work</u> needed to have the hadronic light-by-light contribution to muon g - 2 with new experimental uncertainty goal:  $1.6 \times 10^{-10}$  •

Goal: To have under control model dependences •

# **Corolary: HLbL to electron g-2**

★ New very accurate  $a_e$  leads to most precise fine structure constant  $\alpha$  • G. Gabrielse

New analysis, including subleading  $m_l^2$  terms in  $\frac{\pi^0}{m_e^2/m_{\mu}^2}$  scaling leads to:

$$a_e^{\text{lbl}} = (0.35 \pm 0.10) \times 10^{-13}$$

J.P., E. de Rafael and A. Vainshtein