

Compton scattering from the proton: An analysis using the delta expansion up to N^3LO

Judith McGovern University of Manchester

Work done in collaboration with Harald Grießhammer (GWU), Daniel Phillips (OU) and Deepshikha Shukla (GWU)

The University of Manchester **Compton Scattering**

For large wavelengths, only sensitive to overall charge:

But for smaller wavelengths, the target is polarised by the electric and magnetic fields

λ>>d

λ~d

Compton Scattering

For large wavelengths, only sensitive to overall charge:

But for smaller wavelengths, the target is polarised by the electric and magnetic fields

λ>>d

The low-energy Hamiltonian is:

$$\begin{split} H_{eff} &= \frac{(\mathbf{p} - Q\mathbf{A})^2}{2m} + Q\phi - \frac{1}{2}4\pi \left(\alpha \vec{E}^2 + \beta \vec{H}^2 \right. \\ &+ \gamma_{E1} \vec{\sigma} \cdot \vec{E} \times \dot{\vec{E}} + \gamma_{M1} \vec{\sigma} \cdot \vec{H} \times \dot{\vec{H}} - 2\gamma_{E2} E_{ij} \sigma_i H_j + 2\gamma_{M2} H_{ij} \sigma_i E_j \right) \\ \end{split}$$
where $E_{ij} = \frac{1}{2} (\nabla_i E_j + \nabla_j E_i)$ and $H_{ij} = \frac{1}{2} (\nabla_i H_j + \nabla_j H_i)$

Scattering Amplitudes

There is only a narrow window where polarisabilities are significant but expansion in powers of photon energy ω is still valid. Need theory which covers wider energy range - χ PT.

MANCHESTER

The Universit of Mancheste

July 7th 2009

HBχPT for Compton Scattering

 $O(q^2)$: Thomson term

 $O(q^3)$: LET and pion-pole terms terms for spin-dependent for amplitudes,

,

HBχPT for Compton Scattering

 $O(q^2)$: Thomson term

 $O(q^3)$: LET and pion-pole terms terms for spin-dependent for amplitudes, + full energy-dependent amplitude from pion loops, including predictions for polarisabilities

,

 $O(q^2)$: Thomson term

 $O(q^3)$: LET and pion-pole terms terms for spin-dependent for amplitudes, + full energy-dependent amplitude from pion loops, including predictions for polarisabilities

 $O(q^4)$: 1/M corrections and further contribution to energy-dependent amplitude BUT four undetermined LECs $\delta \alpha_p$, $\delta \beta_p$, $\delta \alpha_n$ and $\delta \beta_n$. The γ_i are still predicted

Fitting α_p and β_p in $O(q^4) \chi PT$

source: Beane et al, Phys. Lett. B567 200 (2003); Nucl. Phys. A747 311 (2005)

MANCHESTER 1824

The University of Manchester

Fitting α_p and β_p in $\mathcal{O}(q^4) \chi PT$

 $\omega_{\rm lab}$ --- O(q)

source: Beane et al, Phys. Lett. B567 200 (2003); Nucl. Phys. A747 311 (2005)

Best fit (excluding grey regions): $\alpha_p = (12.4 \pm 1.1)^{+0.5}_{-0.5}, \beta_p (= 3.4 \pm 1.1)^{+0.1}_{-0.1}$ Baldin Sum Rule constrained fit: $\alpha_p = (11.0 \pm 0.2)^{+0.5}_{-0.5}, \beta_p = (2.8 \pm 0.5 \mp 0.2)^{+0.1}_{-0.1}$ Units: 10^{-4} fm³

MANCHESTER

The University of Manchester Chiral Dynamics 2009

O(q⁴) HBChPT

Fitting α_p and β_p in $\mathcal{O}(q^4) \chi PT$

source: Beane et al, Phys. Lett. B567 200 (2003); Nucl. Phys. A747 311 (2005)

Best fit (excluding grey regions): $\alpha_p = (12.4 \pm 1.1)^{+0.5}_{-0.5}, \ \beta_p (= 3.4 \pm 1.1)^{+0.1}_{-0.1}$ Baldin Sum Rule constrained fit: $\alpha_p = (11.0 \pm 0.2)^{+0.5}_{-0.5}, \ \beta_p = (2.8 \pm 0.5 \mp 0.2)^{+0.1}_{-0.1}$ Units: 10^{-4} fm³

Obviously something is missing though. The Delta!

Judith McGovern

MANCHESTER

The University of Manchester

July 7th 2009

Including the Δ

 $\Delta \equiv M_{\Delta} - M_N \approx 271$ MeV is a rather small scale. Traditionally it is counted as $\Delta/\Lambda_{\chi} \sim m_{\pi}/\Lambda_{\chi}$ ("SSE"). But in Compton scattering the pion is clearly important at lower energies than the Delta.

Alternative: count

$$\frac{m_{\pi}}{\Delta} \sim \frac{\Delta}{\Lambda_{\chi}} \quad \Rightarrow \quad \delta^2 \equiv \left(\frac{\Delta}{\Lambda_{\chi}}\right)^2 \sim \frac{m_{\pi}}{\Lambda_{\chi}}$$

Then graphs with one Δ propagator are one order of δ higher than the corresponding nucleon graphs.

Pascalutsa and Phillips, Phys. Rev. C67 (2003) 055202

The University of Manchester

Including the Δ

 $\Delta \equiv M_{\Delta} - M_N \approx 271$ MeV is a rather small scale. Traditionally it is counted as $\Delta/\Lambda_{\chi} \sim m_{\pi}/\Lambda_{\chi}$ ("SSE"). But in Compton scattering the pion is clearly important at lower energies than the Delta.

Alternative: count

$$rac{n_{\pi}}{\Delta} \sim rac{\Delta}{\Lambda_{\chi}} \quad \Rightarrow \quad \delta^2 \equiv \left(rac{\Delta}{\Lambda_{\chi}}
ight)^2 \sim rac{m_{\pi}}{\Lambda_{\chi}}$$

Then graphs with one Δ propagator are one order of δ higher than the corresponding nucleon graphs.

Pascalutsa and Phillips, Phys. Rev. C67 (2003) 055202

The University of Manchester

Third order with Delta (SSE or δ)

Problem: Including Delta pole and loops gives $\alpha = 17$, $\beta = 13$ (×10⁻⁴fm³) Solution: include counterterms $\delta \alpha$ and $\delta \beta$ at this order.

The University of Mancheste

Third order with Delta (SSE or δ)

Problem: Including Delta pole and loops gives $\alpha = 17$, $\beta = 13$ (×10⁻⁴fm³) Solution: include counterterms $\delta \alpha$ and $\delta \beta$ at this order.

source: Hildebrandt et al, Eur. Phys. J. A20 (2004) 293

Judith McGovern

Chiral Dynamics 2009

The University of Mancheste

Third order with Delta (SSE or δ)

Problem: Including Delta pole and loops gives $\alpha = 17$, $\beta = 13$ (×10⁻⁴fm³) Solution: include counterterms $\delta \alpha$ and $\delta \beta$ at this order.

source: Hildebrandt et al, Eur. Phys. J. A20 (2004) 293

Better fit for backward angles. Best fit: $\alpha_p = 11.52 \pm 2.43$, $\beta_p = 3.42 \mp 1.70$ V. similar central values, but a number of differences in approach and data set...

Compton scattering from the proton

Chiral Dynamics 2009

Fourth order with Delta

Problem with naive addition of $O(\delta^3)$ and $O(\delta^4)$ amplitudes. Both raise cross section for intermediate energies and backward angles. Combination is too much. Trace to γ_{M1} which has large contributions from both NLO π N and Delta-pole graphs. Drop the latter (as already required for spin-independent polarisabilities).

How high should we take our cut-off?

Fourth order with Delta

Problem with naive addition of $O(\delta^3)$ and $O(\delta^4)$ amplitudes. Both raise cross section for intermediate energies and backward angles. Combination is too much. Trace to γ_{M1} which has large contributions from both NLO π N and Delta-pole graphs. Drop the latter (as already required for spin-independent polarisabilities).

How high should we take our cut-off?

LOW: Polarisabilities are a low-energy phenomenon. At high energies the response is much more complex.

Also, effects of Delta width start to be visible.

Fourth order with Delta

Problem with naive addition of $O(\delta^3)$ and $O(\delta^4)$ amplitudes. Both raise cross section for intermediate energies and backward angles. Combination is too much. Trace to γ_{M1} which has large contributions from both NLO πN and Delta-pole graphs. Drop the latter (as already required for spin-independent polarisabilities).

How high should we take our cut-off?

LOW: Polarisabilities are a low-energy phenomenon. At high energies the response is much more complex.

Also, effects of Delta width start to be visible.

HIGH: The fit is very sensitive to the value of the $\gamma N\Delta$ coupling b1. At low energies may get unrealistic values, so distorting other fit parameters. Also, terms of higher order become important - eg choice of frame for calculations

Judith McGovern

Chiral Dynamics 2009

Evaluating the data

Judith McGovern

MANCHESTER 1824

The University of Manchester

Compton scattering from the proton

July 7th 2009

Comparison of cm and Breit frames

Here the red curve is the Breit frame, and the blue curve the center of mass frame, for the same parameters.

80 10

Comparison of cm and Breit frames II

 $\theta = 60$

 $\theta = 140$

Best fit parameters (up to 240 MeV) CM: $\alpha = 11.1$, $\beta = 4.2$, $b_1 = 4.7$ Breit: $\alpha = 9.9$, $\beta = 4.3$, $b_1 = 4.2$

Including Delta width

Inclusion of Delta width à la Pascalutsa and Phillips; also include higher-order Δ/M_N and ω/M_N corrections to vertex. Reduces frame dependence. PP: $\alpha = 12.0$, $\beta = 4.1$, $b_1 = 3.5$. $\chi^2 = 282$ for 233 points and 18 parameters.

Compton scattering from the proton

Varying the cutoff

 $\omega_{max} = 130 \text{ MeV}: \alpha = 13.1, \beta = 3.6, b_1 = 2.1, \chi^2 = 96 \text{ for } 110 - 13 \text{ dof}$ $\omega_{max} = 160 \text{ MeV}: \alpha = 13.3, \beta = 2.9, b_1 = 4.2, \chi^2 = 132 \text{ for } 156 - 14 \text{ dof}$ $\omega_{max} = 200 \text{ MeV}: \alpha = 12.7, \beta = 3.0, b_1 = 4.3, \chi^2 = 189 \text{ for } 194 - 14 \text{ dof}$ $\omega_{max} = 240 \text{ MeV}: \alpha = 12.0, \beta = 4.1, b_1 = 3.5, \chi^2 = 283 \text{ for } 235 - 18 \text{ dof}$

Baldin-constrained: $\alpha + \beta \approx 14$: Tentative results $\alpha = 11.5$, $\beta = 2.5$ - errors?

Compton scattering from the proton

Chiral Dynamics 2009

Still to do

- Estimates of higher-order (N⁴LO) effects including electric $\gamma N\Delta$ coupling
- Understanding of mechanism that determines promotion of CTs.
- Understanding what new data would be useful
- Deuteron (next talk!).