LATTICE OCD

CHIRAL DYNAMICS 2009 BERN, SWITZERLAND

André Walker-Loud
College of William and Mary, Virginia, USA

PREVIEW

NUMERICAL REDSULTS: NPLQCD

2-Hadron Interactions on the Lattice
2-meson interactions: precision predictions

$$
\mathcal{I}=2 \pi \pi \text { Scattering }
$$

$n \geq 3$ mesons and 3-body interactions
3 -baryon interactions:

$$
\begin{aligned}
& \Xi^{0} \Xi^{0} n \\
& n n p
\end{aligned}
$$

- Conclusions

PREVIEW

Silas Beane University of NewHampshire
Will Detmold College of William and MaryHuey-Wen LinUniversity of Washington
Tom LuuKostas Orginos College of William and MaryAssumpta Parreno University of BarcelonaMartin Savage University of WashingtonAaron Torok Univ. of NewHampshire
ANALYTIC WORKJiunn-Wei Chen National Taiwan UniversityDonal O'Connell IAS: PrincetonPaulo Bedaque University of Maryland

Introduction

Why study nuclear interactions with lattice QCD?
much intrinsically interesting nuclear physics which is difficult/ impossible to access
experimentally

for example, the nuclear equation of state in neutron stars this requires an understanding of hyperon-nucleon interactions
we would like to connect our understanding of nuclear physics to the fundamental theory of QCD

2-Hadron Scattering on the Lattice

Minkowski vs Euclidean

In Minkowski space, scattering is performed by measuring the scattering phase shift of asymptotically separated, on-shell particles

In Euclidean space:
cuts moved off real axis
particles do not go on shell
\Rightarrow except at kinematic thresholds, can not reconstruct the Minkowski S-matrix elements

In FINITE Euclidean volume, particles can never escape eachother the finite volume interaction energy can be related to the infinite volume scattering phase shift - Lüscher's Method

2-Hadron Scattering on the Lattice

two particle energy levels in a box:
for two identical particles:

$$
\begin{aligned}
\Delta E_{2} & =2 \sqrt{P^{2}+m^{2}}-2 m \\
p \cot \delta & =\frac{1}{\pi L} S\left(\frac{p^{2} L^{2}}{16 \pi^{2}}\right) \\
& \text { for non-interacting particles } \quad \vec{p}=\frac{2 \pi \vec{n}}{L} \\
L / r \gg 1 \quad r \sim m_{\pi}^{-1} & \lim _{\Lambda \rightarrow \infty} \sum_{n<\Lambda} \frac{1}{n^{2}-\eta}-4 \pi \Lambda \\
& m_{\pi} L>4
\end{aligned}
$$

for low momenta

$$
p \cot \delta=\frac{1}{a}+\frac{1}{2} r p^{2}+\ldots
$$

the shift in energy due to interactions allows one to calculate the infinite volume scattering parameters (up to non-universal exponentially suppressed volume corrections).

2-Mesons

Why calculate 2-meson interactions with lattice QCD?

Scattering is cool
In particular, the interaction of two pseudo-Goldstone mesons is highly constrained by chiral dynamics
this allows for good check of the method
but more than that - can make precision predictions of meson-meson scattering parameters
for $\mathcal{I}=2 \pi \pi$ scattering, can make I\% predictions
clean system to study
$\mathrm{SU}(2)$ chiral dynamics
$\mathrm{SU}(3)$ symmetry/breaking in the meson sector

2-Mesons $\mathcal{I}=2 \pi \pi$

Coarse MILC $(b \sim 0.125 \mathrm{fm})$	Dimensions	L		
	$L \times T \times L_{5}$	$[f \mathrm{~m}]$	m_{π}	m_{K}
2064f21b676m007m050	$20^{3} \times 32 \times 16$	2.5	290	$N_{c f g} \times N_{\text {source }}$
2064f21b676m010m050	$20^{3} \times 32 \times 16$	2.5	350	580
2064 f 21 b 679 m 020 m 050	$20^{3} \times 32 \times 16$	2.5	490	$468 \times 16=7776$
2064 f 21 b 681 m 030 m 050	$20^{3} \times 32 \times 16$	2.5	590	640

2-Mesons $\mathcal{I}=2 \pi \pi$

2-Mesons $\mathcal{I}=2 \pi \pi$

TABLE I: Calculated $I=2 \pi \pi$ scattering lengths and details of all uncertainties.

Quantity	$m_{l}=0.007$	$m_{l}=0.010$	$m_{l}=0.020$	$m_{l}=0.030$
m_{π} / f_{π}	$1.990(11)(14)$	$2.323(6)(3)$	$3.059(5)(10)$	$3.476(10)(6)$
$m_{\pi} a_{\pi \pi}^{I=2}$	$-0.1458(78)(25)(14)$	$-0.2061(49)(17)(20)$	$-0.3540(68)(89)(16)$	$-0.465(14)(06)(05)$
$\Delta_{M A}$	$0.0033(3)$	$0.0030(4)$	$0.0023(10)$	$0.0018(16)$
$\Delta_{F V}$	± 0.0055	± 0.0022	± 0.003	± 0.0001
$\Delta_{m_{r e s}}$	± 0.0032	± 0.0035	± 0.0036	± 0.0032
$m_{\pi} a_{\pi=}^{I=2} m_{\pi} r_{\pi=}^{I=2} \frac{\mathbf{p}^{2}}{2 m_{\pi}^{2}}$	0.0004	0.0007	0.0014	0.0018

Can address all sources of systematic error (except for rooting of staggered action)
O Mixed Action Extrapolation formula (lattice spacing corrections)
Chen, O’Connell, AWL PRD 75, 2007
O Exponential Corrections to Lüscher's formula (finite volume corrections)
Bedaque, Sato, AWL PRD 73, 2006
O Residual chiral symmetry breaking from the domain-wall action
O Effective Range corrections

$$
m_{\pi} a_{\pi \pi}^{I=2}=-0.04330 \pm 0.00042 \quad \text { Beane et al (NPLQCD) PRD } 77 \text { (2008) }
$$

For pion mass and decay constant, it is found that one-loop formulae get correct order of magnitude FV corrections, but two-loop formulae are needed for accurate corrections. G. Colangelo, S. Durr, C. Haefeli NPB 721 (2005)

2-Mesons $\mathcal{I}=2 \pi \pi$

Why are the lattice spacing corrections so small? The good chiral properties of the domain-wall valence quarks have a dramatic effect on the extrapolation formula to one-loop.

$$
\left.\begin{array}{rl}
m_{\pi} a_{\pi \pi}^{I=2}=-\frac{m_{u u}^{2}}{8 \pi f^{2}}\left\{1+\frac{m_{u u}^{2}}{(4 \pi f)^{2}}\left[4 \ln \left(\frac{m_{u u}^{2}}{\mu^{2}}\right)\right.\right. & +4 \frac{\tilde{m}_{j u}^{2}}{m_{u u}^{2}} \ln \left(\frac{\tilde{m}_{j u}^{2}}{\mu^{2}}\right)+l_{\pi \pi}^{\prime}(\mu) \\
& \left.-\frac{\tilde{\Delta}_{P Q}^{2}}{m_{u u}^{2}}\left[\ln \left(\frac{m_{u u}^{2}}{\mu^{2}}\right)\right]-\frac{\tilde{\Delta}_{P Q}^{4}}{6 m_{u u}^{4}}\right] \\
& \left.+\frac{\tilde{\Delta}_{P Q}^{2}}{(4 \pi f)^{2}} l_{P Q}^{\prime}(\mu)+\frac{b^{2}}{(4 \pi f)^{2}} l_{b^{2}}^{\prime}(\mu)\right\}
\end{array}\right] \begin{aligned}
\tilde{\Delta}_{P Q}^{2}= & m_{j j}^{2}+\Delta_{s e a}(b)-m_{u u}^{2} \\
\tilde{m}_{j u}^{2} & =B_{0}\left(m_{u}+m_{j}\right)+b^{2} \Delta_{M i x}
\end{aligned}
$$

Every sickness expected is apparent:
partial quenching ($\tilde{\Delta}_{P Q}$) lattice discretization effects (b)

2-Mesons $\mathcal{I}=2 \pi \pi$

lattice-physical parameters (mass and decay constant measured directly from correlators) the scattering length is given by

$$
m_{\pi} a_{\pi \pi}^{I=2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[3 \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)-1-l_{\pi \pi}^{I=2}(\mu)\right]\right\}
$$

2-Mesons $\mathcal{I}=2 \pi \pi$

lattice-physical parameters (mass and decay constant measured directly from correlators) the scattering length is given by

$$
\begin{array}{r}
m_{\pi} a_{\pi \pi}^{I=2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[3 \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)-1-l_{\pi \pi}^{I=2}(\mu)\right]\right. \\
\left.-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \frac{\tilde{\Delta}_{P Q}^{4}}{6 m_{\pi}^{4}}\right\}
\end{array}
$$

The explicit dependence on the lattice spacing has exactly cancelled - up to a calculable effect from the hairpin interactions!!!

This is independent of the type of sea-quarks

Chen, O'Connell,Van de Water,AWL PRD 73 (2006)
Chen, O'Connell,AWL PRD 75 (2007)
Chen, O'Connell,AWL JHEP 0904 (2009)

2-Mesons $\mathcal{I}=2 \pi \pi$

lattice-physical parameters (mass and decay constant measured directly from correlators) the scattering length is given by

$$
\begin{array}{r}
m_{\pi} a_{\pi \pi}^{I=2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[3 \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)-1-l_{\pi \pi}^{I=2}(\mu)\right]\right. \\
\left.-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \frac{\tilde{\Delta}_{P Q}^{4}}{6 m_{\pi}^{4}}\right\}
\end{array}
$$

The explicit dependence on the lattice spacing has exactly cancelled - up to a calculable effect from the hairpin interactions!!!
$\mathrm{SU}(3)$: chiral symmetry dictates that any strange-quark mass dependence at NLO must be of the form $m_{\pi}^{2} m_{K}^{2}$
there can not be any (local) strange-quark mass dependence in the on-shell renormalized scattering length in $\mathrm{SU}(3)$
all strange (sea) quark mass dependence is renormalized in the on-shell renormalized values of m_{π} and f_{π}
For more details on mixed action EFT - see talk by Jack Laiho,Thur, 15:35

2-Mesons $\mathcal{I}=2 \pi \pi$

(exponential) finite volume corrections

$$
\begin{aligned}
\Delta\left(p \cot \delta_{\pi \pi}^{I=2}\right) & =8 \pi m_{\pi}\left[\frac{\partial}{\partial m_{\pi}^{2}} i \Delta \mathcal{I}\left(m_{\pi}\right)+2 i \Delta \mathcal{J}_{\exp }\left(4 m_{\pi}^{2}\right)\right] \\
\Delta\left(m a_{\pi \pi}^{I=2}\right) & =-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[\frac{m_{\pi}^{2}}{f_{\pi}^{2}} \frac{\partial}{\partial m_{\pi}^{2}} i \Delta \mathcal{I}\left(m_{\pi}\right)+\frac{2 m_{\pi}^{2}}{f_{\pi}^{2}} i \Delta \mathcal{J}_{\exp }\left(4 m_{\pi}^{2}\right)\right] \\
i \Delta \mathcal{I}(m) & =\int \frac{d q_{0}}{2 \pi}\left[\frac{1}{L^{3}} \sum_{\vec{q}=\frac{2 \pi \vec{n}}{L}}-\int \frac{d^{3} q}{(2 \pi)^{3}}\right] \frac{i}{q^{2}-m^{2}} \\
& =\frac{m}{4 \pi^{2} L} \sum_{\vec{n} \neq 0} \frac{1}{|\vec{n}|} K_{1}(|\vec{n}| m L)
\end{aligned}
$$

$$
\begin{align*}
i \Delta \mathcal{J}_{\exp }\left(4 m^{2}\right) & =\frac{1}{16 \pi^{2}} \frac{1}{L \sqrt{m^{2}+p^{2}}} \sum_{\vec{n} \neq 0} \frac{1}{|\vec{n}|} \int_{-\infty}^{\infty} d y \frac{y \operatorname{Im} e^{i 2 \pi y|\vec{n}|}}{\sqrt{y^{2}+\frac{m^{2} L^{2}}{4 \pi^{2}}}\left(\sqrt{y^{2}+\frac{m^{2} L^{2}}{4 \pi^{2}}}+\sqrt{\frac{p^{2} L^{2}}{4 \pi^{2}}+\frac{m^{2} L^{2}}{4 \pi^{2}}}\right)} \\
& \simeq-\frac{1}{16 \pi} \sum_{\vec{n} \neq 0}\left[K_{0}(|\vec{n}| m L) \bar{L}_{-1}(|\vec{n}| m L)+K_{1}(|\vec{n}| m L) \bar{L}_{0}(|\vec{n}| m L)-\frac{1}{|\vec{n}| m L}\right], \tag{A2}
\end{align*}
$$

2-Mesons $\mathcal{I}=2 \pi \pi$

domain-wall action at finite 5th dimension has residual chiral symmetry breaking

$$
\begin{aligned}
\overline{\mathcal{L}}= & 2 B_{0} \bar{L}_{4} \operatorname{str}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right) \operatorname{str}\left(m_{\text {res }} \Sigma^{\dagger}+\Sigma m_{\text {res }}^{\dagger}\right) \\
& +8 B_{0}^{2} \bar{L}_{6} \operatorname{str}\left(m_{q} \Sigma^{\dagger}+\Sigma m_{q}^{\dagger}\right) \operatorname{str}\left(m_{\text {res }} \Sigma^{\dagger}+\Sigma m_{\text {res }}^{\dagger}\right)+\ldots
\end{aligned}
$$

naive dimensional analysis
A.V.Manohar and H.Georgi Nucl. Phys. B (1984)

$$
\Delta_{m_{r e s}}\left(m_{\pi} a_{\pi \pi}^{I=2}\right)=\frac{8 \pi m_{\pi}^{4}}{\left(4 \pi f_{\pi}\right)^{4}} \frac{m_{\text {res }}}{m_{l}}
$$

2-Mesons $\mathcal{I}=2 \pi \pi$

TABLE I: Calculated $I=2 \pi \pi$ scattering lengths and details of all uncertainties.

Quantity	$m_{l}=0.007$	$m_{l}=0.010$	$m_{l}=0.020$	$m_{l}=0.030$
m_{π} / f_{π}	$1.990(11)(14)$	$2.323(6)(3)$	$3.059(5)(10)$	$3.476(10)(6)$
$m_{\pi} a_{\pi \pi}^{I=2}$	$-0.1458(78)(25)(14)$	$-0.2061(49)(17)(20)$	$-0.3540(68)(89)(16)$	$-0.465(14)(06)(05)$
$\Delta_{M A}$	$0.0033(3)$	$0.0030(4)$	$0.0023(10)$	$0.0018(16)$
$\Delta_{F V}$	± 0.0055	± 0.0022	± 0.003	± 0.0001
$\Delta_{m_{r e s}}$	± 0.0032	± 0.0035	± 0.0036	± 0.0032
$m_{\pi} a_{\pi \pi}^{I=2} m_{\pi} r_{\pi \pi}^{I=2} \frac{\mathbf{p}^{2}}{2 m_{\pi}^{2}}$	0.0004	0.0007	0.0014	0.0018

$m_{r e s}$ is one of the dominant uncertainties in our calculation!?

2-Mesons $\mathcal{I}=2 \pi \pi$

2-Mesons $\mathcal{I}=2 \pi \pi$

$$
\begin{gathered}
m_{\pi} a_{\pi \pi}^{I=2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[3 \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)-1-l_{\pi \pi}^{I=2}(\mu)\right]\right\} \\
l_{\pi \pi}^{I=2}=5.7 \pm 1.3 \quad \text { NPLQCD: PRD } 77(2007) \\
l_{\pi \pi}^{I=2}=4(4 \pi)^{2}\left(4 l_{1}^{r}+4 l_{2}^{r}+l_{3}^{r}-l_{4}^{r}\right) \\
l_{i}^{r}(\mu)=\frac{\gamma_{i}}{32 \pi^{2}}\left[\bar{l}_{i}+\ln \left(\frac{\left(m_{\pi}^{p h y s}\right)^{2}}{\mu^{2}}\right)\right] \quad \gamma_{1}=\frac{1}{3}, \quad \gamma_{2}=\frac{2}{3}, \quad \gamma_{3}=-\frac{1}{2}, \quad \gamma_{4}=2 \\
\longrightarrow l_{\pi \pi}^{I=2}(\mu)=\frac{8}{3} \bar{l}_{1}+\frac{16}{3} \bar{l}_{2}-\bar{l}_{3}-4 \bar{l}_{4}+3 \ln \left(\frac{\left(m_{\pi}^{p h y s}\right)^{2}}{\mu^{2}}\right)
\end{gathered}
$$

combined phenomenology and lattice QCD determination of \bar{l}_{i}

$$
\begin{gather*}
-1.0 \leq \bar{l}_{1} \leq 0.2 \quad 4.2 \leq \bar{l}_{2} \leq 4.4 \quad 3.1 \leq \bar{l}_{3} \leq 3.5 \quad 4.0 \leq \bar{l}_{4} \leq 4.2 \\
\\
\\
0.6 \leq l_{\pi \pi}^{I=2}\left(f_{\pi}\right) \leq 3.8 \quad(5.7 \pm 1.3)
\end{gather*}
$$

2-Mesons $\mathcal{I}=2 \pi \pi$

Coarse MILC $(b \sim 0.125 \mathrm{fm})$	Dimensions	L		
	$L \times T \times L_{5}$	$[f \mathrm{~m}]$	m_{π}	m_{K}
2064f21b676m007m050	$20^{3} \times 32 \times 16$	2.5	290	$N_{c f g} \times N_{\text {source }}$
2064f21b676m010m050	$20^{3} \times 32 \times 16$	2.5	350	580
2064 f 21 b 679 m 020 m 050	$20^{3} \times 32 \times 16$	2.5	490	$468 \times 16=7776$
2064 f 21 b 681 m 030 m 050	$20^{3} \times 32 \times 16$	2.5	590	640

2-Mesons $\mathcal{I}=2 \pi \pi$

Coarse MILC ($b \sim 0.125 \mathrm{fm}$)	Dimensions $L \times T \times L_{5}$	$\begin{gathered} L \\ {[\mathrm{fm}]} \end{gathered}$	$\begin{gathered} m_{\pi} \\ {[\mathrm{MeV}]} \\ \hline \end{gathered}$	$\begin{gathered} m_{K} \\ {[\mathrm{MeV}]} \\ \hline \end{gathered}$	$N_{\text {cfg }} \times N_{\text {source }}$
2064f21b676m007m050	$20^{3} \times 32 \times 16$	2.5	290	580	$1267 \times 24=30408$
2064f21b676m010m050	$20^{3} \times 32 \times 16$	2.5	350	595	$768 \times 24=18432$
2064f21b679m020m050	$20^{3} \times 32 \times 16$	2.5	490	640	$486 \times 24=11664$
2064f21b681m030m050	$20^{3} \times 32 \times 16$	2.5	590	675	$564 \times 24=13536$
Fine MILC ($b \sim 0.09 \mathrm{fm}$)					
4096f2b7045m0062m031	$40^{3} \times 96 \times 40$	2.5	230	539	$109 \times 1=109$
4096f2b7045m0062m031	$40^{3} \times 96 \times 12$	2.5	234	540	$109 \times 1=109$
2896f2b709m0062m031	$28^{3} \times 96 \times 12$	2.5	320	560	$1001 \times 7=7007$
2896f2b711m0124m031	$28^{3} \times 96 \times 12$	2.5	446	578	$513 \times 3=1539$

New data set will allow us to address systematics more thoroughly

- two lattice spacings
- two volumes
- two $m_{\text {res }}\left(L_{5}\right)$can now perform 2-loop chiral extrapolation

2-Mesons $\mathcal{I}=2 \pi \pi$

2-Mesons $\mathcal{I}=2 \pi \pi$

2-Mesons $\mathcal{I}=2 \pi \pi$

2-Mesons $\mathcal{I}=2 \pi \pi$

2-Mesons $\mathcal{I}=2 \pi \pi \quad \mathcal{I}=1 K K \quad \mathcal{I}=3 / 2 K \pi$

2-Mesons $\mathcal{I}=2 \pi \pi \quad \mathcal{I}=1 K K \quad \mathcal{I}=3 / 2 K \pi \quad f_{K} / f_{\pi}$

Counter Terms

$$
\begin{aligned}
& m_{\pi} a_{\pi \pi}^{I=2}: \frac{4 m_{\pi}^{4}}{\pi f_{\pi}^{4}} L_{\pi \pi}^{I=2} \\
& m_{K} a_{K K}^{I=1}: \frac{4 m_{K}^{4}}{\pi f_{K}^{4}} L_{K K}^{I=1} \\
& \mu_{K \pi} a_{K \pi}^{I=3 / 2}: \frac{\mu_{K \pi}^{2}}{4 \pi f_{K} f_{\pi}}\left[\frac{32 m_{K} m_{\pi}}{f_{K} f_{\pi}} L_{\pi \pi}^{I=2}-\frac{8\left(m_{K}-m_{\pi}\right)^{2}}{f_{K} f_{\pi}} L_{5}\right] \\
& \mu_{\pi K}=\frac{m_{\pi} m_{K}}{m_{\pi}+m_{K}} \\
& \frac{f_{K}}{f_{\pi}}: \frac{8\left(m_{K}^{2}-m_{\pi}^{2}\right)}{f_{K} f_{\pi}} L_{5} \\
& L_{\pi \pi}^{I=2}=2 L_{1}+2 L_{2}+L_{3}-2 L_{4}-L_{5}+2 L_{6}+L_{8} \\
& L_{K K}^{I=1}=L_{\pi \pi}^{I=2} \quad \text { Excellent testing ground for SU(3) breaking! }
\end{aligned}
$$

meson baryon

Aaron Torok's Ph.D.Thesis work is on meson-baryon scattering
See Silas Beane’s plenary talk - Thursday I lam

$n \geq 3$ mesons

multi-boson interaction energies in finite volume

$$
\begin{aligned}
& \Delta E_{n}=\frac{4 \pi \bar{a}}{M L^{3}}{ }^{n} C_{2}\{ 1-\left(\frac{\bar{a}}{\pi L}\right) \mathcal{I}+\left(\frac{\bar{a}}{\pi L}\right)^{2}\left[\mathcal{I}^{2}+(2 n-5) \mathcal{J}\right] \\
& \quad-\left(\frac{\bar{a}}{\pi L}\right)^{3}\left[\mathcal{I}^{3}+(2 n-7) \mathcal{I} J+\left(5 n^{2}-41 n+63\right) \mathcal{K}\right] \\
&+\left(\frac{\bar{a}}{\pi L}\right)^{4}\left[\mathcal{I}^{4}-6 \mathcal{I}^{2} \mathcal{J}+\left(4+n-n^{2}\right) \mathcal{J}^{2}+4\left(27-15 n+n^{2}\right) \mathcal{I} K\right. \\
&\left.\left.\quad+\left(14 n^{3}-227 n^{2}+919 n-1043\right) \mathcal{L}+16(n-2)\left(\mathcal{T}_{0}+n \mathcal{I}_{1}\right)\right]\right\} \\
&+{ }^{n} C_{3} \frac{\hat{\eta}_{3}^{L}}{L^{6}}+{ }^{n} C_{3} \frac{6 \pi \bar{a}^{3}}{M^{3} L^{7}}(n+3) \mathcal{I}+\mathcal{O}\left(L^{-} 8\right)
\end{aligned}
$$

$\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{T}_{0}, \mathcal{T}_{1}$ known geometric constants

$$
\bar{a}=a+\frac{2 \pi}{L^{3}} a^{3} r \quad \hat{\eta}_{3}^{L}=\bar{\eta}_{3}^{L}\left[1-\frac{6 \bar{a}}{\pi L} \mathcal{I}\right]+\frac{72 \pi \bar{a}^{4} r}{M L} \mathcal{I}
$$

S. Beane, W. Detmold and M.J. Savage W. Detmold and M.J. Savage

Multi-Kaon

$\ln \left(\frac{\Delta C_{n K}(t)}{\Delta C_{n K}(t+1)}\right) \longrightarrow b \Delta E_{n K}$

Multi-Kaon

Multi-Kaon

Pion condensate

$$
\chi-\mathrm{PT}: \quad \rho_{I}=\frac{1}{2} f_{\pi}^{2} \mu_{I}\left(1-\frac{m_{\pi}^{4}}{\mu_{I}^{4}}\right)
$$

three body force is important!!

Kaon condensate NPLQCD/arXiv:0807.1924

$$
\chi-\mathrm{PT}: \quad \rho_{K}=\frac{1}{2} f_{K}^{2}\left(\mu_{K}-\frac{m_{K}^{4}}{\mu_{K}^{3}}\right)
$$

Silas Beane

2-Baryons

2-Baryons

2-Baryons $\quad 30,000$ propagators! $\quad m_{\pi} \simeq 290 \mathrm{MeV}$

2-Baryons: High Statistics on Anisotropic Clover Lattices

we have switched our production to using the anisotropic clover lattices produced by R. Edwards et.al.
clover propagators are ~10 times faster with EigCG inverter, we get an extra factor of ~ 7 A.Stathopoulos and K.Orginos arXiv:0707.0131

In the last year, we have performed ~ 284 light/strange quark propagator calculations on each of II94 configurations on the $20^{3} \times 128 \quad m_{\pi}=390 \mathrm{MeV}$ anisotropic gauge ensembles

$$
a_{s} / a_{t}=3.5
$$

$$
284 \times 1194 \simeq 340,000 \text { measurements! }
$$

This is an order of magnitude increase in our previous statistics
The principle goal was to perform a scaling study in the extraction of the hadron spectrum/ two-body energies as a function of NPLQCD
number of sources per configuration
number of configurations
arXiv:0903.2990
arXiv:0905.0466

2-Baryons: High Stat. on Aniso Clover Lattices

2-Baryons: High Stat. on Aniso Clover Lattices

2-Baryons: High Stat. on Aniso Clover Lattices arxiv:0903.2990
 arXiv:0905.0466

	Exponential Fitting			Matrix-Prony			
state	$b_{t} M$	range	$\chi^{2} /$ dof	Q	$b_{t} M$	range	$\chi^{2} /$ dof
N	$0.20693(33)(07)$	$7-64$	0.72	0.99	$0.20682(32)(10)$	$11-40$	1.50
Λ	$0.22265(25)(16)$	$9-64$	0.89	0.78	$0.22255(28)(5)$	$10-47$	1.21
Σ	$0.22819(25)(07)$	$8-64$	0.85	0.86	$0.22811(28)(18)$	$12-47$	0.77
Ξ	$0.24112(21)(06)$	$7-64$	0.84	0.87	$0.24097(25)(3)$	$11-50$	0.81

2-Baryons: High Stat. on Aniso Clover Lattices

$$
\begin{gathered}
\frac{\delta M}{M}=A N_{c f g}^{b} \quad b=\{-0.55(4),-0.51(3),-0.38(4),-0.67(6)\} \\
\{\pi, K, N, \Xi\}
\end{gathered}
$$

2 Baryons:High Stat Aniso Clorice Nfocd
arXiv:0903.2990
arXiv:0905.0466

2-Baryons: High Stat. on Aniso Clover Lattices artiv:0903.2990
arXiv:0905.0466

Two Baryons - see talk by Assumpta Parreno, Thursday 15:40

2-Baryons: High Stat. on Aniso Clover Lattices arxiv:0903.2990
arXiv:0905.0466

$E_{\Xi^{0} \Xi^{0} n}$

2-Baryons: High Stat. on Aniso Clover Lattices arxiv:0903.2990
 arXiv:0905.0466

Palice NPLQCD

arXiv:0903.2990
arXiv:0905.0466

$$
\Xi^{0} \Xi^{0} n \quad 288 \text { contractions triton } 2880 \text { contractions }
$$

CONCLUSIONS

two meson scattering (lengths) from lattice QCD is a precision science
requires chiral perturbation theory
provides stringent constraints/tests of chiral perturbation theory
why stop at two mesons?
can calculate 3-body interactions for maximal isospin pions/kaons 3-body pion interaction is not consistent with zero 3-body kaon interaction is consistent with zero
can study the chemical potential of a gas of pions and kaons mixed pion-kaon interactions under way
same calculation which gives 1% uncertainty in $\mathcal{I}=2 \pi \pi$ scattering, does not provide useful information for proton-proton (baryon-baryon) scattering - 30,000 propagator calculations!
we have switched to using anisotropic clover lattices/propagators
this provides a factor of ~ 100 in statistics for same cpu hours
we have performed a high statistics study 1-2-and 3-body baryon correlation functions

