Parity Violation From Few Nucleon Systems

Michael Gericke

Chiral Dynamics Workshop

Bern, July 6-10 2009

Outline

PV and the hadronic weak interaction

Shi-Lin Zhu, et al., Nuclear Physics A 748 (2005) 435–498 M.J. Ramsey Musolf and S. Page, Annu. Rev. Nucl. Part. Sci. 2006. 56:1–52 C.-P. Liu, Nuclear Physics Phys. Rev. C 75, 065501 (2007)

Meson Exchange Picture

EFT and Hadronic PV

The experimental program

Parity violating processes between nucleons are used as a tool to study the hadronic weak interaction (HWI) as well as how it is modified by the strong interactions from the simple Standard Model prediction.

Two (common) ways to study HWI:

1. Flavor changing $\Delta S=1$ hyperon and meson decay

Decay amplitudes, asymmetries, ...

2. Flavor conserving $\Delta S=0$ PV interactions at low energy

Mostly asymmetries, analyzing power, rotation angles

Flavor changing decay of mesons and hyperons:

Much theoretical progress from EFT, χPT, heavy quark
 EFT

 Structure of operators from effective Lagrangians incorporate the symmetries of QCD

Not so, in hyperon decay:

Unresolved ∆I = ¹/₂ rule puzzle

 Anomalously large PV asymmetries in hyperon radiative decays

• Etc.

Do the unexpected observations in the ∆S=1 sector come from a dynamical strange quark or some other process ?

Standard Model:
$$\mathcal{L}_W^{INT} = -\frac{g}{2\sqrt{2}} \left(J_C^{\mu\dagger} W_\mu + J_c^\mu W_\mu^\dagger \right) - \frac{g}{4\cos\theta_w} J_N^\mu Z_\mu$$

Charged currents:

$$J_C^{\mu} = \overline{\psi}_d \gamma^{\mu} (1 - \gamma_5) \psi_u \cos \theta_c + \overline{\psi}_s \gamma^{\mu} (1 - \gamma_5) \psi_u \sin \theta_c$$
$$-\overline{\psi}_d \gamma^{\mu} (1 - \gamma_5) \psi_c \sin \theta_c + \overline{\psi}_s \gamma^{\mu} (1 - \gamma_5) \psi_c \cos \theta_c$$

Neutral currents:

$$J_N^{\mu} = \overline{\psi}_u \gamma^{\mu} (1 - \frac{8}{3} \sin^2 \theta_w - \gamma_5) \psi_u + \overline{\psi}_c \gamma^{\mu} (1 - \frac{8}{3} \sin^2 \theta_w - \gamma_5) \psi_c$$
$$-\overline{\psi}_d \gamma^{\mu} (1 - \frac{4}{3} \sin^2 \theta_w - \gamma_5) \psi_d - \overline{\psi}_s \gamma^{\mu} (1 - \frac{4}{3} \sin^2 \theta_w - \gamma_5) \psi_s$$

Do the unexpected observations in the ∆S=1 sector come from a dynamical strange quark or some other process ?

Standard Model:
$$\mathcal{L}_{W}^{INT} = -\frac{g}{2\sqrt{2}} \left(J_{C}^{\mu\dagger} W_{\mu} + J_{c}^{\mu} W_{\mu}^{\dagger} \right) - \frac{g}{4\cos\theta_{w}} J_{N}^{\mu} Z_{\mu}$$
Charged currents:

$$J_{C}^{\mu} = \overline{\psi}_{d} \gamma^{\mu} (1 - \gamma_{5}) \psi_{u} \cos\theta_{c} + \overline{\psi}_{s} \gamma^{\mu} (1 - \gamma_{5}) \psi_{u} \sin\theta_{c}$$

$$-\overline{\psi}_{d} \gamma^{\mu} (1 - \gamma_{5}) \psi_{c} \sin\theta_{c} + \overline{\psi}_{s} \gamma^{\mu} (1 - \gamma_{5}) \psi_{c} \cos\theta_{c}$$

$$\int S = \pm 1$$

Neutral currents:

Goals of $\Delta S=0$ HWI studies:

1. Answer how the symmetries of QCD characterize the HWI in strongly interacting systems

> The HWI is just a residual effect of the q-q weak interaction for which the range is set by the mass of the Z, W bosons which is much smaller than the size of nucleons, as determined by QCD dynamics

HWI probes short range qq correlations

2. Shed light on the puzzles in the $\Delta S=1$ sector of the HWI

 Q^{P}_{Weak} measures the electron beam helicity correlated asymmetry in the number of elastically scattered electrons from protons in a liquid hydrogen target at very forward angles, to extract the weak charge of the proton.

$$A_{LR}(\vec{e}, p) = \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R} = k(A_{Q_W^p} + A_{H,V} + A_{H,A})$$

 $= Q^2 Q_W^p$ $A_{Q_W^p}$ Quantity of interest = -0.288 ppm $A_{H,V} = Q_W^n \frac{\epsilon G_E^{p,\gamma} G_E^{n,\gamma} + \tau G_M^{p,\gamma} G_M^{n,\gamma}}{\epsilon \left(G_E^{p,\gamma}\right)^2 + \tau \left(G_{\lambda\epsilon}^{p,\gamma}\right)^2} + Q_W^s \frac{\epsilon G_E^{p,\gamma}}{\epsilon \left(G_E^{p,\gamma}\right)^2}$ Must know this from $A_{H,A} = Q_W^e \frac{\epsilon' G_A^{p,\gamma} G_M^{p,\gamma}}{\epsilon \left(G_E^{p,\gamma}\right)^2 + \tau \left(G_M^{p,\gamma}\right)^2}$ world data: $G^{p,Z}_A$ Axial form factor Hadronic structure: Must know hadronic due to wave function or q-q weak interaction measured related to NN form-factors experimental results

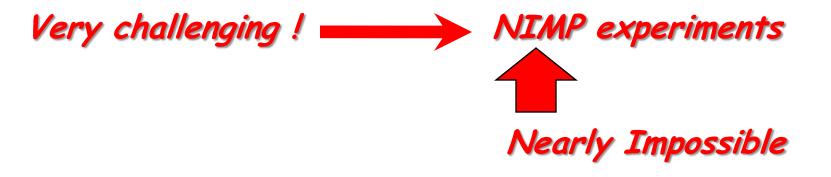
The $\Delta S=0$ HWI can only be isolated experimentally via PV observables, to isolate the weak interaction from the much larger EM and strong interactions.

$$\frac{g_{W}}{\alpha M_{W}^{2}} \approx 10^{-4} \qquad \text{Weak } e-\text{N scale}$$

$$\frac{g_{W}^{2}}{M_{W}^{2}} \cdot \frac{M_{\pi}^{2}}{g_{\pi NN}^{2}} \approx 10^{-7}$$

Weak N-N scale

Very challenging ! — NIMP experiments


The $\Delta S=0$ HWI can only be isolated experimentally via PV observables, to isolate the weak interaction from the much larger EM and strong interactions.

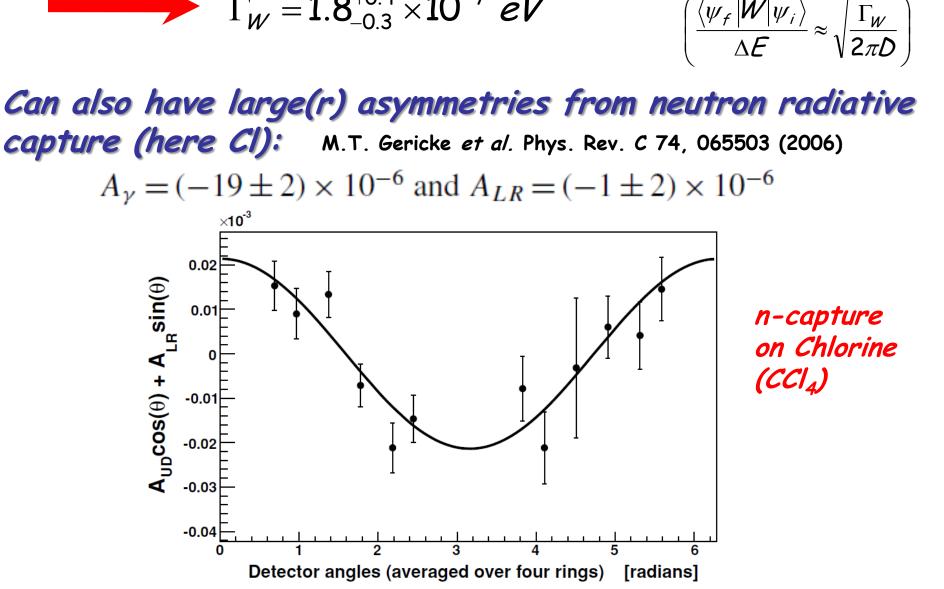
$$\frac{g_W}{\alpha M_W^2} \approx 10^{-4}$$

Weak e-N scale

$$\frac{g_{W}^{2}}{M_{W}^{2}} \cdot \frac{M_{\pi}^{2}}{g_{\pi NN}^{2}} \approx 10^{-7}$$

Weak N-N scale

So people started to look for nuclear many-body (large A) systems for which there exists some fortuitous enhancement of the size of the observable:

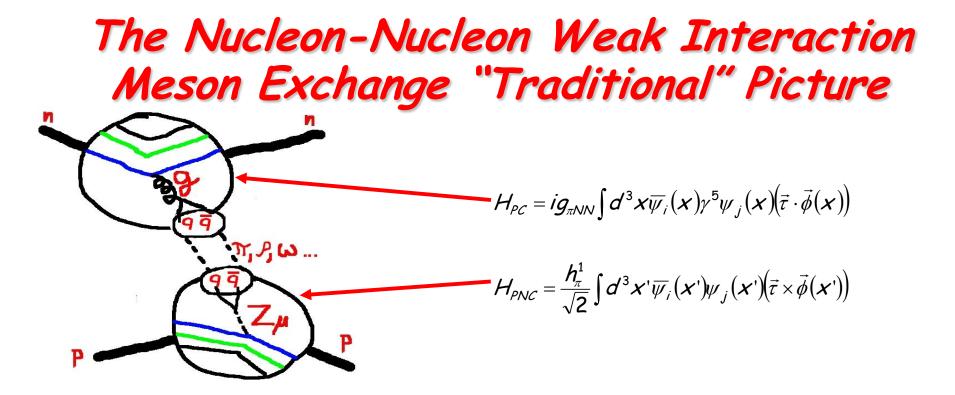

coming from nearly degenerate opposite parity state mixing and interference with the much larger parity allowed transition in nuclear excited states.

e.g. TRIPLE collaboration: parity violation in compound nuclei from neutron-nucleus resonant scattering with longitudinal cross section asymmetries of order 10⁻³-10⁻¹ (up to 10⁶ enhancement)

G.E. Mitchell et al. Phys. Rep. 354, 157 (2001)

But you can get the weak spreading width (weak mixing amplitude) from statistical analysis of this data:

- $\Gamma_{\mu\nu} = 1.8^{+0.4}_{0.3} \times 10^{-7} eV$


However, many-body systems are hard to deal with when it comes to interpretation of the results in a nonstatistical fashion.

There is no transparent connection to SM.

- No nuclear structure physics
- Low nucleon momentum (< ~40 MeV) allows for EFT momentum expansion
- But no enhancement of asymmetries

Solutions to the Lippmann-Schwinger equation – Essentially the first order term in a Born series:

$$\langle f | V_{PNC} | i \rangle = \langle N_f N_f | H_{PC} \frac{1}{E_0 - H_0 + i\varepsilon} H_{PNC} | N_i N_i \rangle \longrightarrow$$

$$\frac{ig_{\pi NN}h_{\pi}^{1}}{\sqrt{32}M}[\vec{\tau}_{1}\times\vec{\tau}_{2}]_{z}[\vec{\sigma}_{1}+\vec{\sigma}_{2}]\cdot\left[\vec{p},\frac{e^{-mr}}{4\pi r}\right]$$

Weak π -Nucleon Coupling (ρ, ω not shown)

Meson exchange picture cont.

$$\langle N_{f}N_{f}|H_{PC}\frac{1}{E_{0}-H_{0}+i\varepsilon}H_{PNC}|N_{i}N_{i}\rangle$$

$$=\sum_{I}\int \frac{d^{3}k}{(2\pi)^{3}} \langle N_{f} | \mathcal{S} | N_{i}, \pi_{I}(k) \rangle \frac{1}{\omega_{k}} \langle N_{f}, \pi_{I}(k) | \mathcal{S} | N_{i} \rangle$$

Meson exchange picture cont. $\langle N_f N_f | H_{PC} \frac{1}{E_0 - H_0 + i\varepsilon} H_{PNC} | N_i N_i \rangle$ $=\sum_{I}\int \frac{d^{3}k}{(2\pi)^{3}} \langle N_{f} | S | N_{i}, \pi_{I}(k) \rangle \frac{1}{\omega_{L}} \langle N_{f}, \pi_{I}(k) | S | N_{i} \rangle$ Relationship to quark degrees of freedom: $S = \frac{i}{2} \int dt_1 \int dt_2 \int dt_3 \left\{ \mathcal{H}_{\mathcal{W}}^{\mathcal{I}}(t_1) \mathcal{H}_{\mathcal{W}}^{\mathcal{I}}(t_2) \mathcal{H}_{\mathcal{S}}^{\mathcal{I}}(t_3) \right\}$ $\mathcal{H}_{W}^{I} = \int d^{3}x \left| \frac{g}{2\sqrt{2}} \left(\mathcal{J}_{C}^{\mu^{*}} \mathcal{W}_{\mu} + \mathcal{J}_{C}^{\mu} \mathcal{W}_{\mu}^{*} \right) + \frac{g}{4\cos\theta_{\mu}} \mathcal{J}_{N}^{\mu} \mathcal{Z}_{\mu} \right|$ $\mathcal{H}_{\mathcal{S}}^{I} = -\int d^{3}x \int d^{3}y \int dt_{v} \left[\mathcal{J}_{\mathcal{S}}f(x,y) \delta(t_{x} - t_{v}) \right]$

Meson exchange picture cont. $\langle N_f N_f | H_{PC} \frac{1}{E_0 - H_0 + i\varepsilon} H_{PNC} | N_i N_i \rangle$ $=\sum_{I}\int \frac{d^{s}k}{(2\pi)^{3}} \langle N_{f} | S | N_{i}, \pi_{I}(k) \rangle \frac{1}{\omega_{L}} \langle N_{f}, \pi_{I}(k) | S | N_{i} \rangle$ Relationship to quark degrees of freedom: $S = \frac{7}{2} \int dt_1 \int dt_2 \int dt_3 \left\{ H_W^I(t_1) H_W^I(t_2) H_S^I(t_3) \right\}$ $H_{W}^{I} = \int d^{3}x \left| \frac{g}{2\sqrt{2}} \left(J_{C}^{\mu} W_{\mu} + J_{C}^{\mu} W_{\mu}^{*} \right) + \frac{g}{4\cos\theta_{\mu}} J_{N}^{\mu} Z_{\mu} \right|$ $H_{S}^{I} = -\int d^{3}x \int d^{3}y \int dt_{y} \left[J_{S}f(x,y)\delta(t_{x}-t_{y}) \right]$

DDH use SU(6), quark model, and measured hyperon decay amplitudes instead !

DDH Model - Benchmark

Calculated loter by

B. Desplanques, J.F. Donoghue, B.R. Holstein, Annals of Physics 124:449-495 (1980)

Arrive at 7 weak meson-nucleon couplings:

. 1

. 012

	h_{π} , h_{p}	Holstein = 1.8 87		
PV coupling	DDH range	DDH best value	DZ	FCDH
h_{π}^1	$0 \rightarrow 30$	+12	+3	+7
$h^0_ ho$	$30 \rightarrow -81$	-30	-22	-10
$h^1_ ho$	$-1 \rightarrow 0$	-0.5	+1	-1
$h_{ ho}^2$	$-20 \rightarrow -29$	-25	-18	-18
h^0_ω	$15 \rightarrow -27$	-5	-10	-13
h^1_ω	$-5 \rightarrow -2$	-3	-6	-6

All values are quoted in units of $g_{\pi} = 3.8 \times 10^{-8}$.

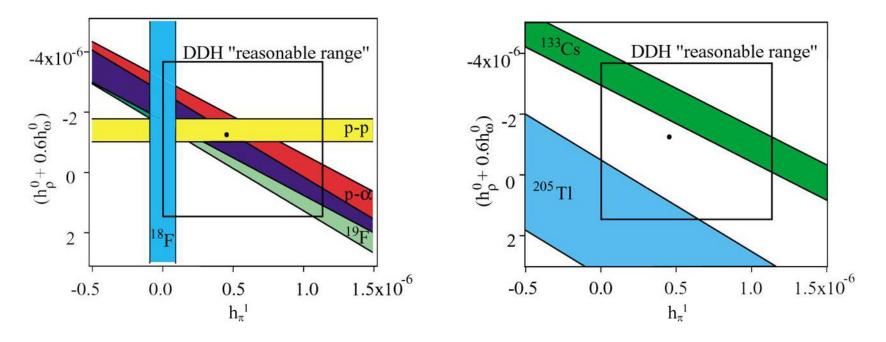
DZ: Dubovik VM, Zenkin SV. Ann. Phys. 172:100 (1986)

FCDH: Feldman GB, Crawford GA, Dubach J, Holstein BR. Phys. Rev. C 43:863 (1991)

DDH Model - Benchmark

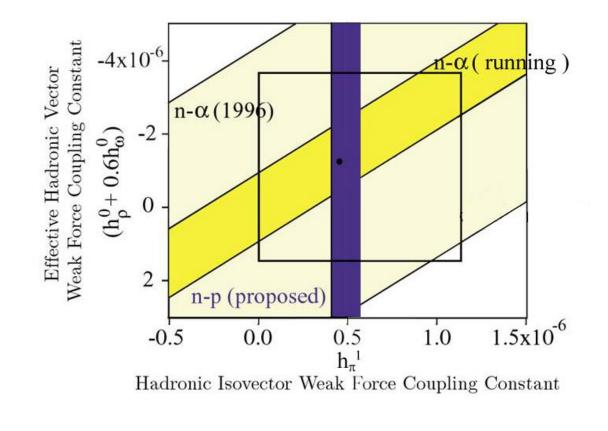
In general, a measured PV NN observable can be expanded in terms of these:

$$\mathcal{O}_{PV} = a_{\pi}^{1}h_{\pi}^{1} + a_{\rho}^{0}h_{\rho}^{0} + a_{\rho}^{1}h_{\rho}^{1} + a_{\rho}^{2}h_{\rho}^{2} + a_{\omega}^{0}h_{\omega}^{0} + a_{\omega}^{1}h_{\omega}^{1}$$

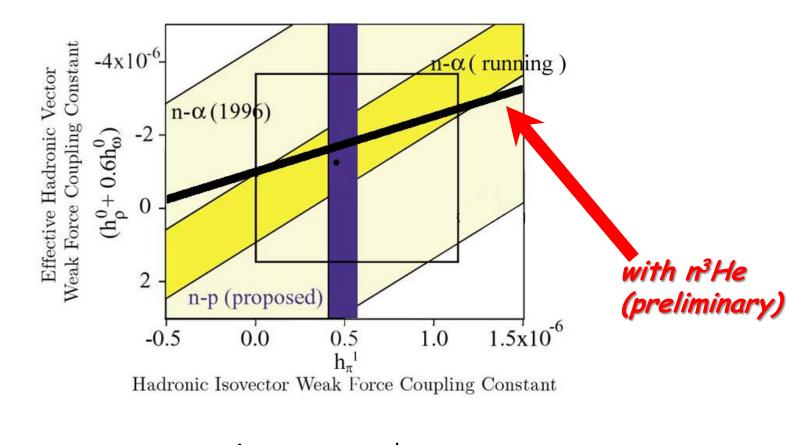

E. G. Adelberger and W. C. Haxton, Ann. Rev. Nucl. Part. Sci. 35, 501 (1985).

DDH Weak Coupling	$(A_{\gamma}) np \rightarrow d\gamma$	(A_{γ}) nd $\rightarrow t\gamma$	(φ _{PV}) n-p (μrad/m)	(φ_{PV}) n- α (μ rad/m)	$\left(\frac{\Delta\sigma}{\sigma}\right) p - p$	$\left(\frac{\Delta\sigma}{\sigma}\right) p - \alpha$	$(A^{p}_{Z}) n^{3}He \rightarrow tp$
a ¹	-0.107	-0.92	-3.12	-0.97	0	-0.340	-0.182
a_{ρ}^{o}	0	-0.50	-0.23	-0.32	0.079	0.140	-0.145
a_{ρ}^{1}	-0.001	0.103	0	0.11	0.079	0.047	0.0267
a_{ρ}^{2}	0	0.053	-0.25	0	0.032	0	0.0012
	0	-0.160	-0.23	-0.22	-0.073	0.059	-0.1269
	0.003	0.002	0	0.22	0.073	0.059	0.0495

Viviani *et al.* preliminary Experimental results generally agree with the DDH ranges, but:


Uncertainties are large

Some experimental results produce conflicting values for coupling constants (e.g. Values for h_π¹ from ¹⁸F and ¹³³Cs differ by several σ)


p-p scat. 15, 45 MeV A_z^{pp} p-p scat. 221 MeV A_z^{pp} p- α scat. 46 MeV A_z^{pp}

¹³³Cs, ²⁰⁵Tl anapole moments

$$\begin{array}{ll} \mathbf{n} + \mathbf{p} \rightarrow \mathbf{d} + \gamma & \mathbf{A}_{\gamma}^{d} \\ \mathbf{n} - \alpha & \text{spin rot. } \mathbf{d} \phi^{\mathbf{n}\alpha} / \mathbf{d} \mathbf{z} \end{array}$$

Unfortunately, the connection between the PV observables and the SM is essentially unknown.

$$\begin{array}{ll} \mathbf{n} + \mathbf{p} \rightarrow \mathbf{d} + \gamma & \mathbf{A}_{\gamma}^{d} \\ \mathbf{n} - \alpha & \text{spin rot. } \mathbf{d} \phi^{\mathbf{n}\alpha} / \mathbf{d} \mathbf{z} \end{array}$$

Unfortunately, the connection between the PV observables and the SM is essentially unknown.

EFT Calculations (Upshot)

The $\Delta S=0$ HWI can be parameterized in terms of 5 (8 with pions) low energy phenomenological constants.

At very low momenta (< ~50 MeV) the constants essentially reduce to the 5 Danilov parameters:

originally determined from NN scattering theory (Born approximation) write down simplest S-P amplitudes with PV and CP cons. amplitudes in addition to singlet and triplet strong ...

At higher momentum include explicit pions: $h_{\pi NN}$, $k_{\pi NN}^{10}$, \tilde{c}_{π} , $\tilde{c}_{2\pi}$

EFT Calculations

Write down 12 possible general P violating and CP conserving currentcurrent terms with all isospin changes up to $\Delta I=2$:

$$\mathcal{O}_{1} = \frac{\mathcal{G}_{1}}{\Lambda_{\chi}^{2}} \overline{\psi}_{N} \mathbf{1} \gamma_{\mu} \psi_{N} \overline{\psi}_{N} \mathbf{1} \gamma^{\mu} \gamma_{5} \psi_{N} \qquad \mathcal{O}_{2} = \frac{\mathcal{G}_{2}}{\Lambda_{\chi}^{2}} \overline{\psi}_{N} \mathbf{1} \gamma_{\mu} \psi_{N} \overline{\psi}_{N} \tau_{3} \gamma^{\mu} \gamma_{5} \psi_{N}$$

$$\widetilde{\mathcal{O}}_{1} = \frac{\widetilde{\mathcal{G}}_{1}}{\Lambda_{\chi}^{3}} \overline{\psi}_{N} \mathbf{1} i \sigma_{\mu\nu} q^{\nu} \gamma_{\mu} \psi_{N} \overline{\psi}_{N} \tau_{3} \gamma^{\mu} \gamma_{5} \psi_{N} \bullet \bullet \bullet \quad \text{etc...}$$

The NN contact potentials are expressed in terms of 12 parameters, but no mesons:

$$\mathcal{C}_{1-5} = \frac{\Lambda_{\chi}}{2m_{N}} g_{1-5} \qquad , \qquad \widetilde{\mathcal{C}}_{1-5} = \widetilde{g}_{1-5} + \frac{\Lambda_{\chi}}{2m_{N}} g_{1-5}$$

$$\mathcal{C}_6 = \widetilde{\mathcal{G}}_6 - \frac{\Lambda_{\chi}}{2m_N}\mathcal{G}_6$$

Shi-Lin Zhu, et al. , Nuclear Physics A 748 (2005) 435-498

Appropriate linear combinations of these produce the 5 Danilov coupling constants to be determined by experiment:

$$\begin{split} \lambda_{t} \propto (\mathcal{C}_{1} - 3\mathcal{C}_{3}) - \left(\tilde{\mathcal{C}}_{1}^{-} - 3\tilde{\mathcal{C}}_{3}^{-}\right) \\ \lambda_{s}^{0} \propto (\mathcal{C}_{1} + \mathcal{C}_{3}) + \left(\tilde{\mathcal{C}}_{1}^{-} + \tilde{\mathcal{C}}_{3}^{-}\right) & {}^{3}\mathcal{S}_{1} \rightarrow {}^{1}\mathcal{P}_{1}^{-} \quad \mathcal{I} = 0 \\ \lambda_{s}^{1} \propto (\mathcal{C}_{2} + \mathcal{C}_{4}) + \left(\tilde{\mathcal{C}}_{2}^{-} + \tilde{\mathcal{C}}_{4}^{-}\right) & {}^{1}\mathcal{S}_{0} \rightarrow {}^{3}\mathcal{P}_{0}^{-} \quad \mathcal{I} = 1 \\ \lambda_{s}^{2} \propto -\sqrt{\frac{8}{3}} \left(\mathcal{C}_{5} + \tilde{\mathcal{C}}_{5}^{-}\right) & \\ \rho_{t} \propto \frac{1}{2} \left(\mathcal{C}_{2} - \mathcal{C}_{4}^{-}\right) + \mathcal{C}_{6} & {}^{3}\mathcal{S}_{1} \rightarrow {}^{3}\mathcal{P}_{1}^{-} \quad \mathcal{I} = 1 \rightarrow 0 \\ \lambda_{s}^{pp} = \lambda_{s}^{0} + \lambda_{s}^{1} + \frac{1}{\sqrt{6}} \lambda_{s}^{2} & \\ \lambda_{s}^{np} = \lambda_{s}^{0} - \frac{2}{\sqrt{6}} \lambda_{s}^{2} & \\ \lambda_{s}^{nn} = \lambda_{s}^{0} - \lambda_{s}^{1} + \frac{1}{\sqrt{6}} \lambda_{s}^{2} & \\ \end{split}$$

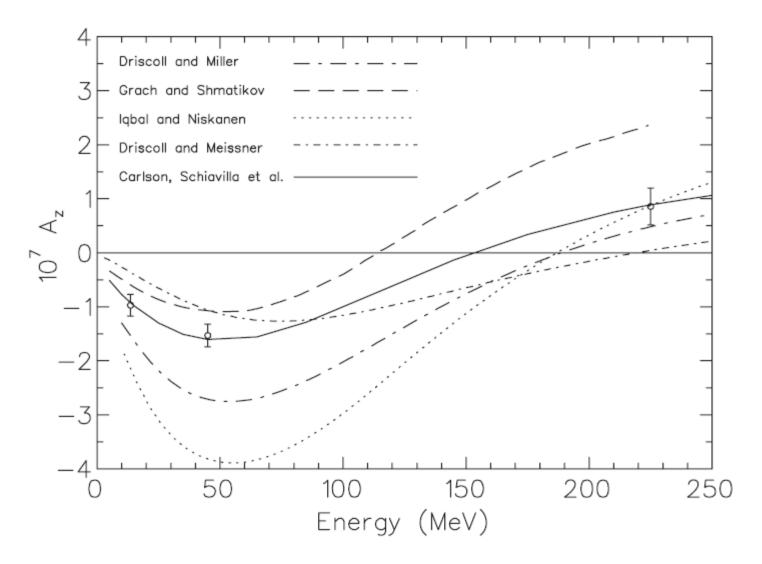
Shi-Lin Zhu, et al. , Nuclear Physics A 748 (2005) 435-498

We need at least 8 few body experiments to completely determine the EFT parameters.

Some have already been done:

Longitudinal Asymmetries in p-p scattering:

 $A_{L}^{pp}(13.6 \text{ MeV}) = -(0.93 \pm 0.20 \pm 0.05) \times 10^{-7} = -0.48 \lambda_{s}^{pp} m_{N}$


Bonn: P.D. Evershiem et al. Phys. Lett. 256 (1991) 11

$$A_{L}^{pp}(45 \text{ MeV}) = -(1.5 \pm 0.22) \times 10^{-7} = -0.82 \lambda_{s}^{pp} m_{N}$$

PSI: S. Kistryn *et al.* Phys. Lett. 58 (1987) 1616 R. Balzer *et al. Phys. Rev. C. 30 (1984) 1409*

Experimental Program The TRIUMF 220 MeV pp experiment $A_{l}^{pp}(221 \text{ MeV}) = -(0.84 \pm 0.29 \pm 0.17) \times 10^{-7} \propto h_{o}^{0} + h_{o}^{1} \equiv h_{o}^{PP}$ A.R. Berdoz et al. Phys. Rev. C 68 034004 (2003) TRIUMF: LH2 TARGET Of order Q^3 in EFT - no calculation yet ? Transverse Field Ion Chamber #1 (TRIC1) TRIC2 ~4% scattered subtract common mode

To Synchronous Detection

A.R. Berdoz et al. Phys. Rev. C 68 034004 (2003)

Longitudinal Asymmetry in $p-\alpha$ scattering:

$$\mathcal{A}_{L}^{p\alpha}(46 \text{ MeV}) = -(3.3 \pm 0.9) \times 10^{-7} = \left[-0.48 \left(\lambda_{s}^{pp} + \frac{1}{2} \lambda_{s}^{np} \right) - 0.107 \left(\rho_{t} + \frac{1}{2} \lambda_{t} \right) \right] m_{N}$$

Bonn: J. Lang et al. Phys. Rev. Lett. 54 (1985) 170

New experiments:

>Longitudinal asymmetry in proton scattering:

•
$$p-d$$
:
 $A_{L}^{pd}(15 \text{ MeV}) = (-0.21 \rho_{t} - 0.07 \lambda_{s}^{pp} - 0.13 \lambda_{t} + 0.04 \lambda_{s}^{np}) m_{N}$

New experiments (or repeats):

> Neutron capture:

Circ. Polarization: $P_{\gamma} = (0.63\lambda_{\tau} - 0.16\lambda_{s}^{np})m_{N} \quad \text{Very challenging!}$ Gamma Asymmetry in np radiative capture: $A_{\gamma} = -0.107 \rho_{t} m_{N}$ LANSCE compl. SNS 2010 Gamma Asymmetry in nd radiative capture:

 $\mathcal{A}_{\gamma} = \left(1.42\rho_{\tau} + 0.59\lambda_{s}^{nn} + 1.18\lambda_{\tau} + 0.51\lambda_{s}^{np}\right)m_{N} \quad \text{Hard, SNS planned}$

Proton Asymmetry in n³He capture

 $A_{z}^{p} = (?)m_{\Lambda}$, Relatively easy, SNS approved ~2011

New experiments (or repeats):

> Neutron spin rotation:

In helium:

$$\frac{d\phi^{n\alpha}}{dz} = \left[1.2\left(\lambda_{s}^{nn} + \frac{1}{2}\lambda_{s}^{np}\right) - 2.68\left(\rho_{t} - \frac{1}{2}\lambda_{t}\right)\right]m_{N}\left[\frac{rad}{m}\right]$$

W.M. Snow *et al*, Completed (NIST)

In hydrogen LH2

$$\frac{d\phi^{np}}{dz} = \left[0.45\lambda_s^{nn} + 1.28\lambda_s^{np} + 0.45\lambda_s^{pp} + 1.26\rho_t - 0.63\lambda_t\right]m_N\left[\frac{rad}{m}\right]$$

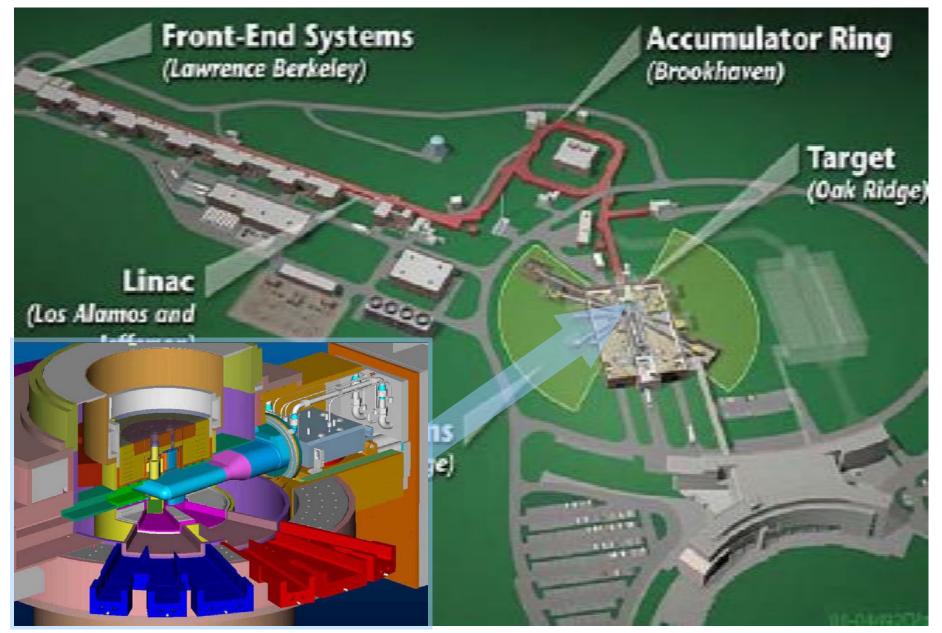
SNS planned

Hadronic Parity Violation with Cold Neutrons

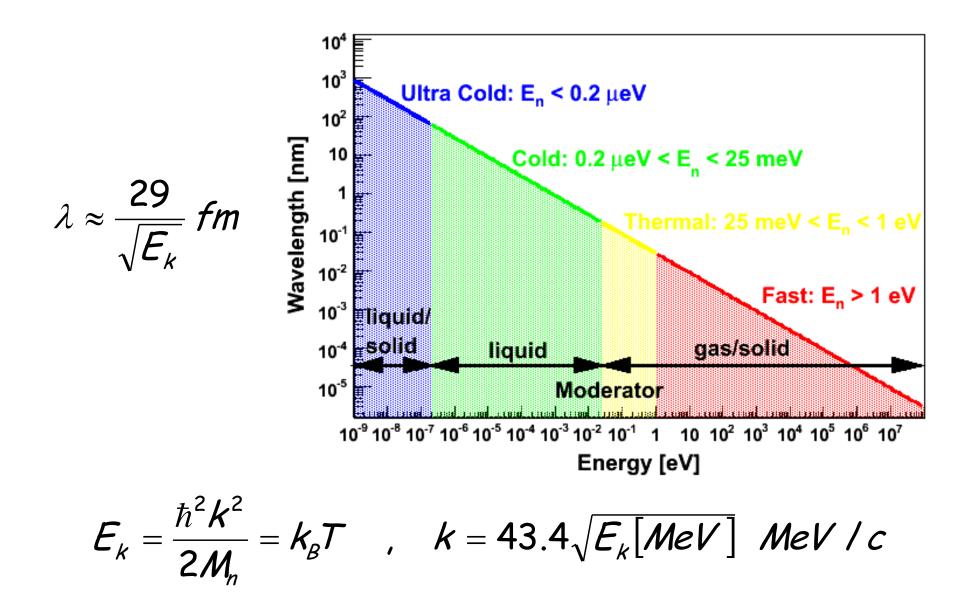
Two experiments (at the SNS):

NPDGamma:

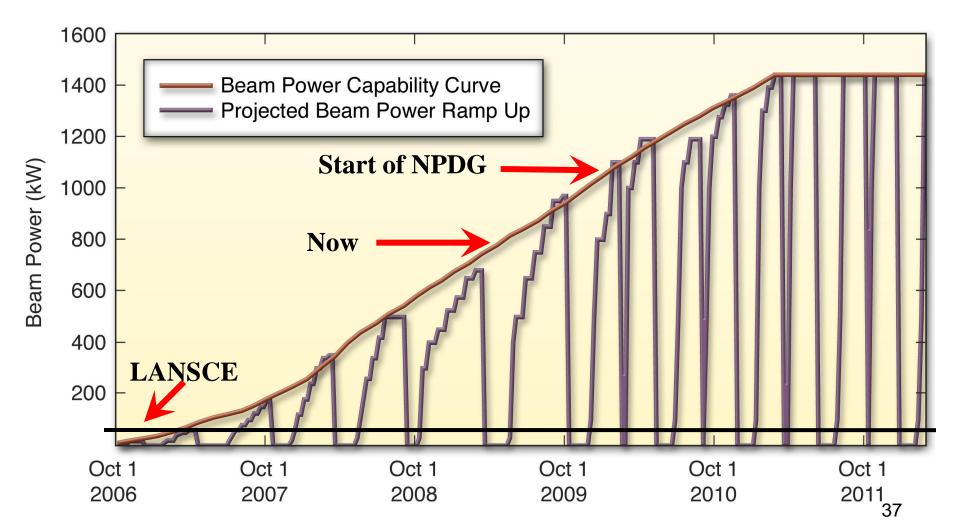
Transversely polarized cold neutrons on hydrogen – looks for a directional asymmetry in the number of γ -rays, after decay: $n + p \rightarrow d + \gamma$

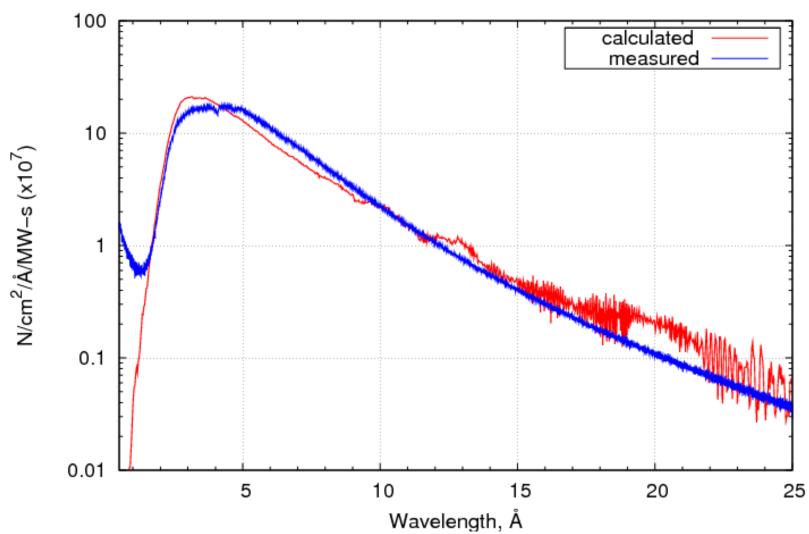

n3He:

Longitudinally polarized cold neutrons on helium 3 – looks for a directional asymmetry in the number of protons after breakup: $n + {}^{3}He \rightarrow t + p$


Spallation Neutron Source (SNS)

The Neutron Energy Scale

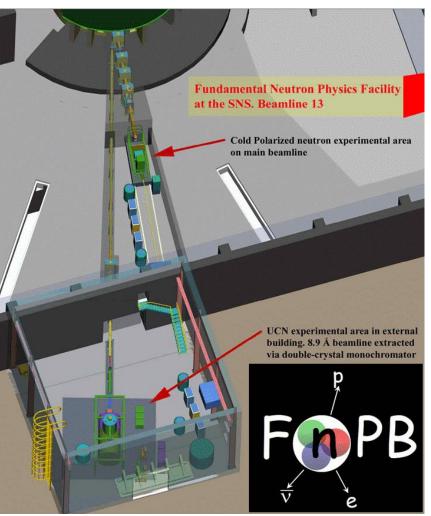


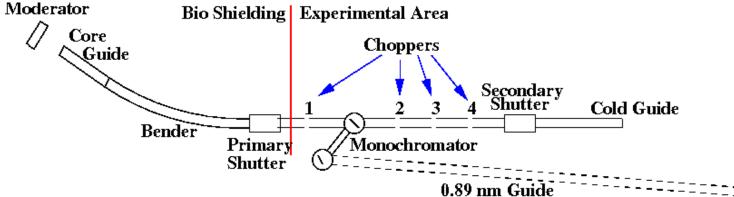

SNS Beam Properties

- total ~ 1.1 × 10¹¹ neutrons/second
- 4.1 \times 10¹⁰ n/s , 5.4 \times 10¹⁰ n/s, 1.1 \times 10¹⁰ n/s for three example regions with no frame overlap
- 4 choppers required for various experimental conditions
 - → eliminate overlap with slower SNS FnPB Flux neutrons from previous pulses Chopper 1 25 (No Frame Overlap) Flux [10⁸n/s/cm²/nm] 20 accommodate extraction of 0.89 nm beam **Chopper 2** 15 avoid potential background problems from leakage of Chopper 3 fast neutrons 0.2 0.3 0.4 0.7 0.8 0.9 0.50.6 Wavelength λ [nm] $E = \frac{0.841}{2^2}$ → neutrons above 4.0 nm are 1.6 0.8 not necessarily caught by Energy [meV] this chopper arrangement


(these come ~180 ms after pulse onset (> 10 frames later) intensity down by 4 orders of magnitude

SNS Ramp-Up Plan

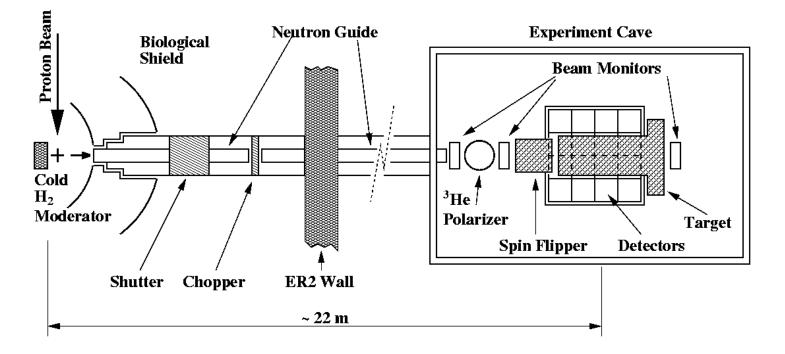



FNPB - 03/12/2009

The Fundamental Neutron Physics Beam (FnPB)

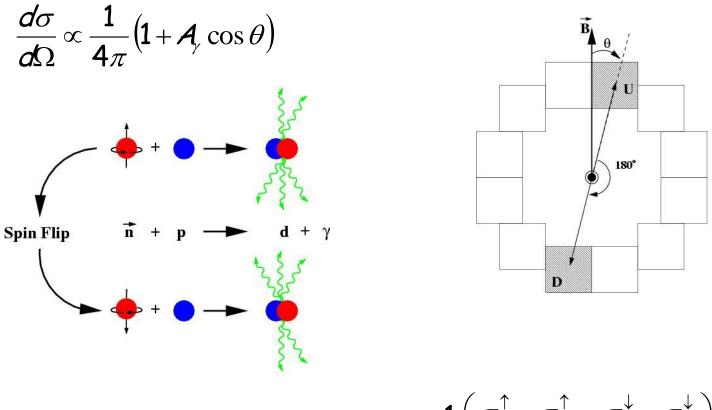
- LH2 moderator
- 15 m long guide ~ 18 m to experiment
- one polyenergetic cold beam line
- one monoenergetic (0.89 nm) beam line
- ~ 40 m to nEDM UCN source
- 4 frame overlap choppers
- . 60 Hz pulse repetition

Cold Beamline - Realized



Flight path 13 - top view 1Å Ó -----UCN Guide Beam Stop 2 -0 100.0 Autor a 13

The NPDGamma Collaboration


Los Alamos National Laboratory, University of Manitoba, University of Michigan, University of Tennessee, TJNAF, University of Dayton, Institute for Nuclear Research, Dubna, NIST, University of Kentucky Indiana University, TRIUMF,

University of New Hampshire, Oak Ridge National Laboratory, University of California-Berkeley, Hamilton College, KEK National Laboratory, Japan University of Virginia, UNAM

The NPDGamma Observable / Theory

The main NPDGamma observable is the up-down asymmetry in the angular distribution of gamma rays with respect to the neutron spin direction.

$$\mathcal{A}_{raw} = (\mathcal{P}_{n}\mathcal{F}_{n}\mathcal{D}_{n}\mathcal{G})\mathcal{A}_{\gamma}\cos\theta = \frac{1}{2}\left(\frac{\sigma_{\upsilon}^{\top} - \sigma_{\upsilon}^{\top}}{\sigma_{\upsilon}^{\uparrow} + \sigma_{\varepsilon}^{\uparrow}} + \frac{\sigma_{\upsilon}^{\vee} - \sigma_{\varepsilon}^{\vee}}{\sigma_{\upsilon}^{\downarrow} + \sigma_{\varepsilon}^{\downarrow}}\right)$$

The observed cross-section is the result of an electro-magnetic transition between initial and final two nucleon states. The possible amplitudes include both parity even M1 and parity odd E1 transitions from L=1 states as a result of the weak perturbation.

$$\frac{d\sigma}{d\Omega} \propto \left| \left\langle \psi_f \left| E\mathbf{1} \right| \psi_i \right\rangle + \left\langle \psi_f \left| M\mathbf{1} \right| \psi_i \right\rangle \right|^2$$

$$\mathcal{H} = \mathcal{H}_{s} + \mathcal{V}_{PNC} \qquad a = \frac{\langle \psi_{1} | \mathcal{V}_{PNC} | \psi_{0} \rangle}{\Delta \mathcal{E}} \qquad | \psi_{i,f} \rangle = | \psi_{0} \rangle + a | \psi_{1} \rangle$$

A measurement of the asymmetry at the 20 % level (10 ppb) will be the most precise measurement of the weak-pion nucleon coupling

$$\frac{ig_{\pi NN}h_{\pi}^{1}}{\sqrt{32}M}[\vec{\tau}_{1}\times\vec{\tau}_{2}]_{z}[\vec{\sigma}_{1}+\vec{\sigma}_{2}]\cdot\left[\vec{p},\frac{e^{-mr}}{4\pi r}\right] \qquad \qquad \frac{g_{\pi NN}h_{\pi}^{1}}{\sqrt{32}}\approx 1.1\times 10^{-6}$$
$$A_{\gamma}=-0.107h_{\pi}^{\Delta I=1}\approx -0.107\times 12\times g_{\pi}=-5\times 10^{-8}$$

NPDGamma EFT Relevance

Systematic study of the NN weak interaction described in terms of a model independent theory appropriate at the low energy scale.

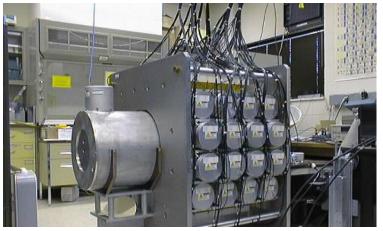
NN weak interaction effects enter into nucleon structure (needed for standard model tests) and atomic parity violation measurements.

5 EFT parameters : $(\lambda_t, \lambda_s^{I=0,1,2},
ho_t)$

Correspond to:
$${}^{3}S_{1}(I = 0) \leftrightarrow {}^{1}P_{1}(I = 0)$$

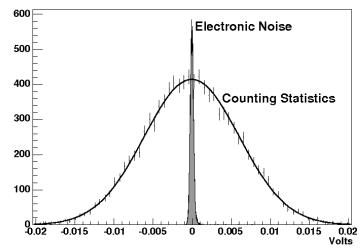
 ${}^{1}S_{0}(I = 0, 1, 2) \leftrightarrow {}^{3}P_{0}(I = 0, 1, 2)$
 ${}^{3}S_{1}(I = 0) \leftrightarrow {}^{3}P_{1}(I = 1)$

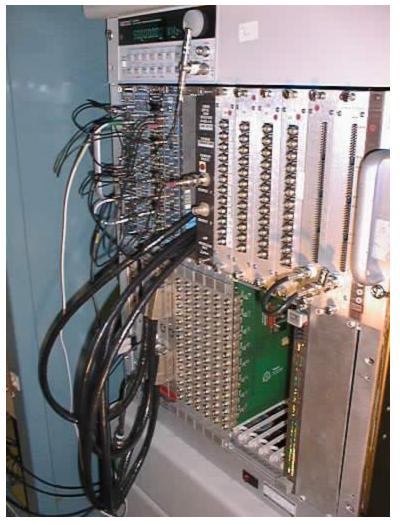
NPDGamma asymmetry relation to EFT constant: $A_{\gamma}^{\vec{n},p}(th) = -0.107 m_N \rho_t = -5 \times 10^{-8}$


C.-P. Liu, Nuclear Physics Phys. Rev. C 75, 065501 (2007)

LH₂ target and CsI detector array

20L vessel of liquid parahydrogen

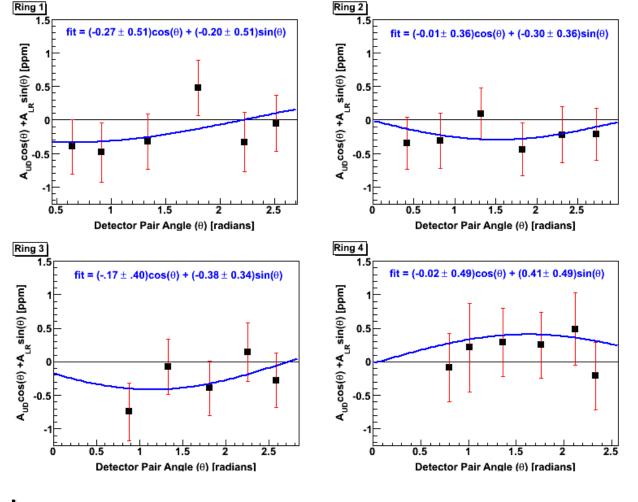

Ortho-hydrogen scatters the neutrons and leads to beam depolarization


 $\cdot 3\pi$ acceptance

·Current-mode experiment

•y-rate ~100MHz (single detector)

NPDGamma has successfully taken 48 days of continuous production data in 2006 – now on par with the best previous measurement – in preparation for one more year of production data at the SNS.

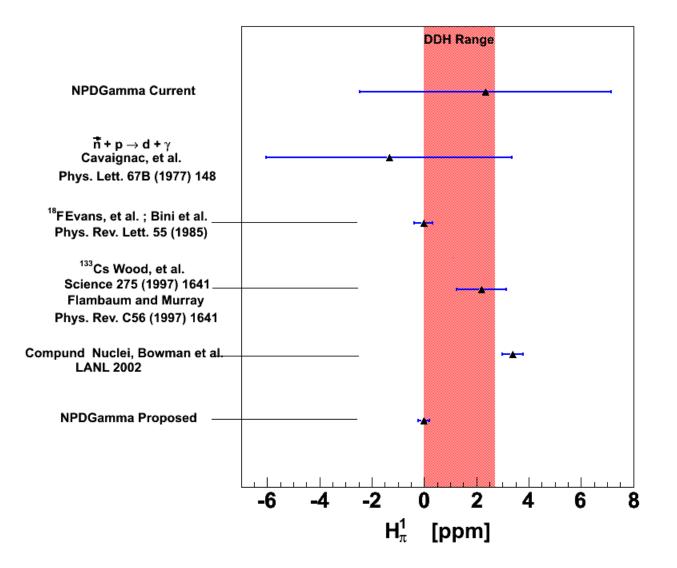

Data Summary from 2006 run

Number of good runs (8.5min long)	~5000
Neutron Polarization	53±2.5%
Spin Flip Efficiency	98.8±0.5%
Para fraction in LH ₂ target	99.98±0.2%
Al background	~25% (ave)
Depolarization	2%
Stern-Gerlach steering Asym	10-10
y-ray circ.pol. Asym	10-10

Data Summary from 2006 run

	Number of good runs (8.5min long)		~5000	
	Neutron Polarization		53±2.5%	
	Spin Flip Efficiency		98.8±0.5%	
	Para fraction in LH ₂ target		99.98±0.2%	
	Al background		~25% (ave)	
10 ²	N I . .		2%	
		sym	10-10	
10	- 		10-10	
σ (b)	ο ^ο οοο _ο ου _σ ου _σ ουστατατίατασο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο			
1				
10-1				
1	E (meV)			

2006 Hydrogen Results:


Total statistical error:

$$A_{\gamma,UD} = (-1.1 \pm 2.1) \times 10^{-7}$$

$$A_{\gamma,LR} = (-1.9 \pm 2.0) \times 10^{-7}$$

Total systematic error: a (very) conservative 10% mostly due to pol.

Preliminary Hydrogen Results:

What's new for the SNS run

Supermirror Polarizer replaces the ³He Polarizer (x4.1)
 Higher moderator brightness (x12) => more cold/slow neutrons
 New LH2 target - thinner windows, smaller background contribution

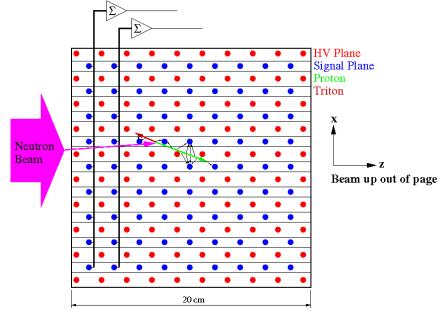
Predicted size -5x10⁻⁸ - NPDGamma will make a 20% measurement, most precise so far

Installation begins in July 2009Production Hydrogen Data: Summer 2010

The Parity Violating Longitudinal Asymmetry in Polarized Cold Neutron Capture on Helium 3

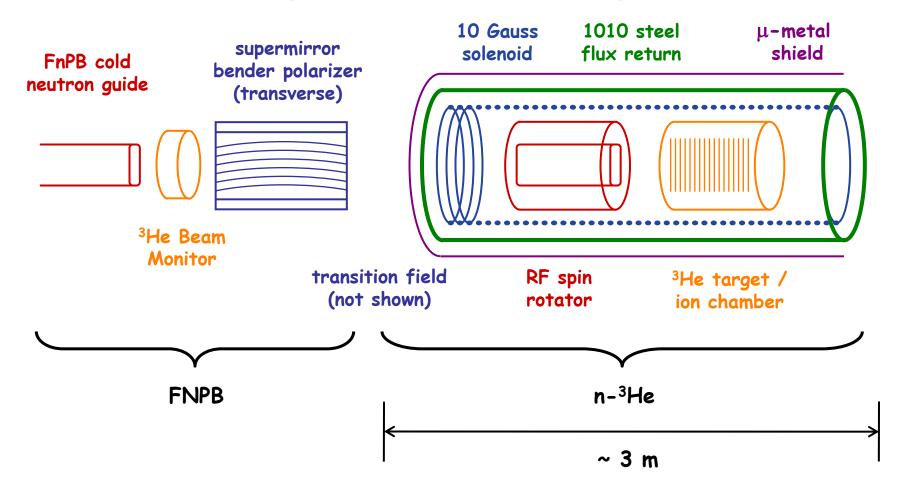
n³He

- J.D. Bowman, S.I. Penttilä
- R. Carlini
- M. Gericke, S.A. Page
- C. Crawford
- V. Gudkov
- J. Martin
- C. Gillis
- C .Gould
- P-N. Seyo
- P. Alacorn, T. Balascuta
- S. Baessler
- M. Viviani


Anna Hayes, Gerry Hale, and Andi Klein Oak Ridge National Laboratory Jefferson National Laboratory University of Manitoba University of Kentucky University of South Carolina University of Winnipeg Indiana University NC State University Duke Arizona State University University of Virginia INFN, Sezione di Pisa

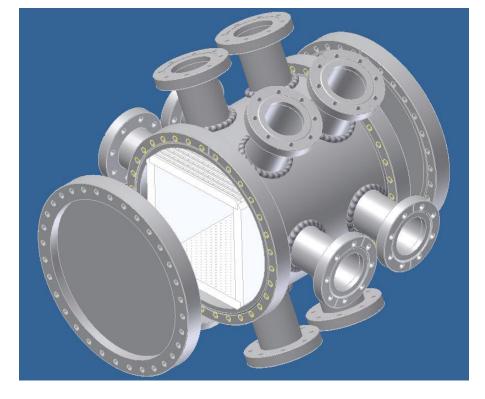
Los Alamos National Laboratory

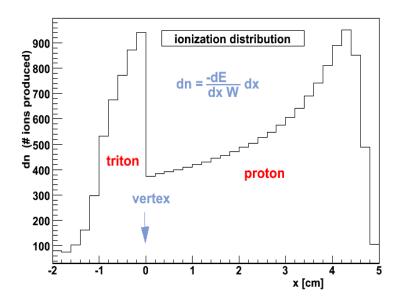
n³He Principle of Measurement

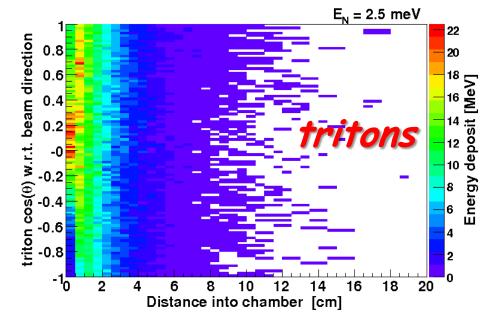

Measure the asymmetry in the number of forward going protons in a ³He wire chamber as a function of neutron spin:

- $ec{\sigma}_n\cdotec{k}_T$ Directional PV asymmetry in the number of tritons
- $\vec{\sigma}_n \cdot \vec{k}_p$ Directional PV asymmetry in the number of protons (much larger track length)
- wire chamber is both target and detector
- wires run vertical or horizontal
- no crossed wire: keep the field simple to avoid electron multiplication (non-linearities)

 $\vec{n} + {}^{3}\text{He} \rightarrow {}^{3}\text{H} +$

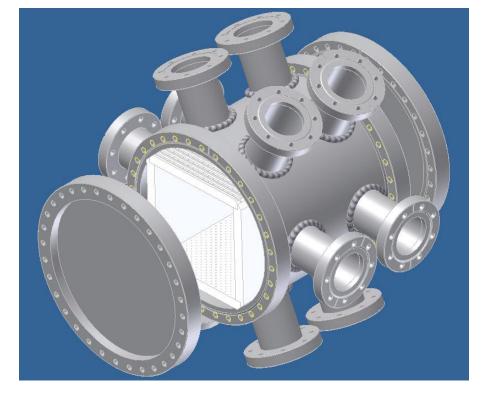


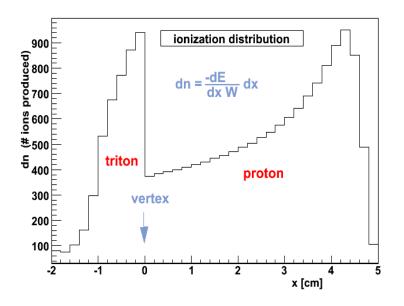

Iongitudinal holding field - suppressed PC asymmetry
 RF spin flipper - negligible spin-dependent neutron velocity
 ³He ion chamber - both target and detector

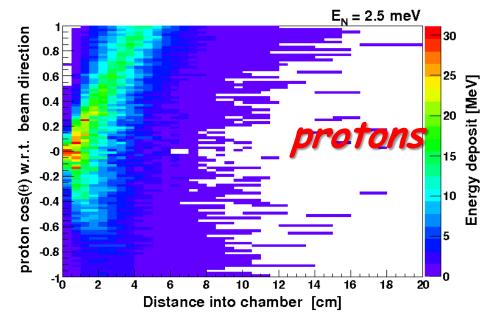

- MC simulations of sensitivity to proton asymmetry
 - including wire correlations

$$- \delta A_{ph} = \frac{1}{\sqrt{N}P_N} \sqrt{\sigma_D^2 + \sigma_{coll}^2}$$
$$\sigma_d \simeq 6$$

- tests at LANSCE FP12
 - fission chamber flux calibration
 - prototype drift chamber R&D
 - new beam monitors for SNS

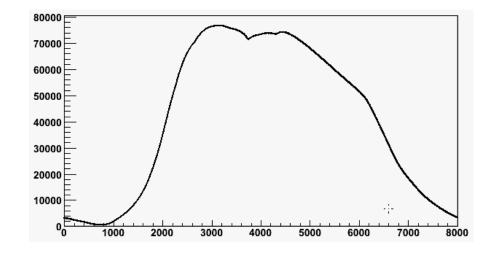


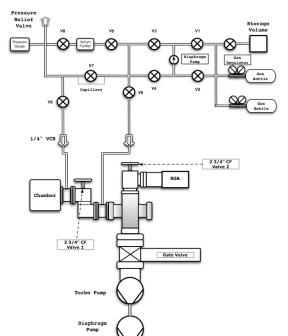


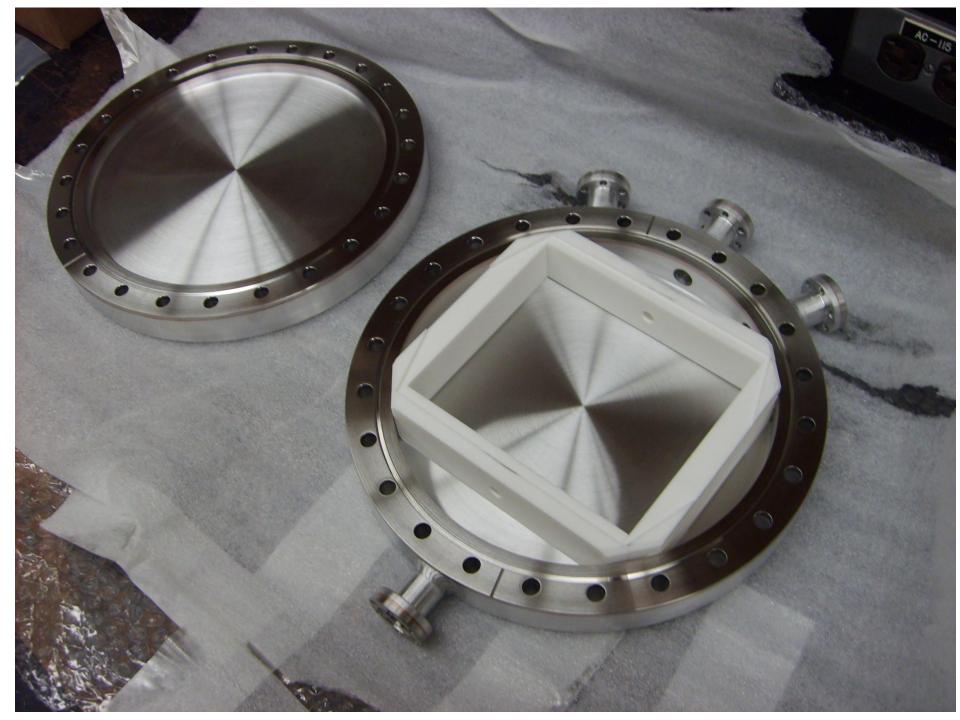

- MC simulations of sensitivity to proton asymmetry
 - including wire correlations

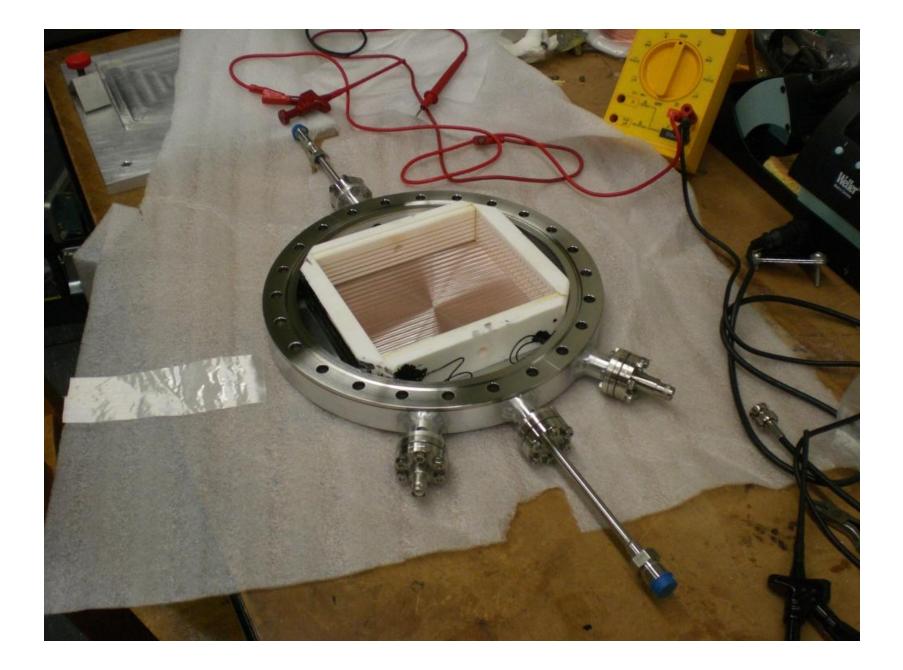
$$- \delta A_{ph} = \frac{1}{\sqrt{N}P_N} \sqrt{\sigma_D^2 + \sigma_{coll}^2}$$
$$\sigma_d \simeq 6$$

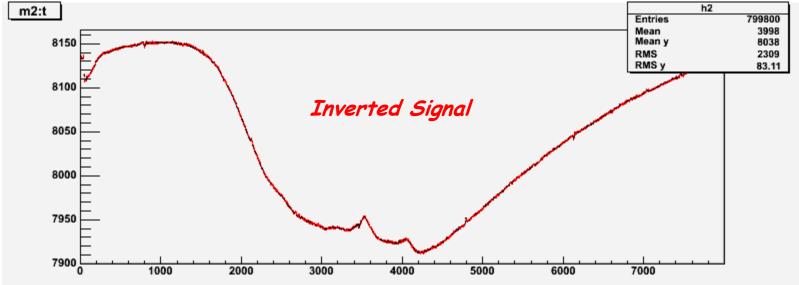
- tests at LANSCE FP12
 - fission chamber flux calibration
 - prototype drift chamber R&D
 - new beam monitors for SNS






LANSCE n³He Chamber Tests





Right: LANL FP12 beam line with new beam monitor installed

Below: New beam monitor signal at 100 µA proton beam current.

n³He Relevance

Systematic study of the NN weak interaction described in terms of a model independent theory appropriate at the low energy scale.

NN weak interaction effects enter into nucleon structure (needed for standard model tests) and atomic parity violation measurements.

5 EFT parameters :
$$(\lambda_t,\lambda_s^{I=0,1,2},
ho_t)$$

Correspond to:

$${}^{3}S_{1}(I = 0) \leftrightarrow {}^{1}P_{1}(I = 0)$$

 ${}^{1}S_{0}(I = 0, 1, 2) \leftrightarrow {}^{3}P_{0}(I = 0, 1, 2)$

$${}^{3}S_{1}(I=0) \leftrightarrow {}^{3}P_{1}(I=1)$$

n3He asymmetry relation to EFT constant:

$$\mathcal{A}_{p}^{\vec{n},^{3}\mathcal{H}e}\left(\mathcal{T}h.
ight)=\kappa\lambda_{S}^{I=0}pprox3 imes10^{-7}$$

M. Viviani, R. Schiavilla, calculation in progress

Status/Schedule

- n-³He experiment approved by the FnPB PRAC, 2008-01-07
 - first measurement of PV in the n-³He reaction
 - large asymmetry ~10-7
 - proposed measurement accuracy $\delta A = 1.0 imes 10^{-8}$
- recent progress in experimental design
 - full 4-body calculation of PV observable
 - R&D projects on target/detector design at LANL
 - new spin flipper design permitting compact / less expensive layout
 - preliminary holding field design
- Ieverage existing hardware / technology
 - major components based on similar NPDGamma instrumentation
 - can reuse NPDGamma electronics / power supplies
- FnPB infrastructure
 - no safety hazards, no LH₂ target, new power or cooling requirements
 - minimal modification of FnPB cave stand for n-³He solenoid
 - technician support for readiness review preparation, setup of experiment
- Tentative Schedule
 - 2009-2010 Design and development
 - Late 2011 Installation
 - 2012 Run

