Pion form factors from lattice QCD with exact chiral symmetry

T. Kaneko for JLQCD + TWQCD collaborations

¹High Energy Accelerator Research Organization (KEK) ²Graduate University for Advanced Studies

Chiral Dynamics 2009, Jul 6, 2009

・ロト ・ 同ト ・ ヨト ・ ヨト

1. introduction

pion vector form factor $F_V(q^2)$

 $\langle \pi(p')|V_{\mu}|\pi(p')\rangle = (p'+p)_{\mu}F_{V}(q^{2}), \quad F_{V}(q^{2}) = 1 + (\langle r^{2}\rangle_{V}/6)q^{2} + O(q^{4})$

- well studied by expr't + ChPT \Rightarrow precise estimate of $\langle r^2 \rangle_V$, l_6 (L_9)
- a benchmark of LQCD calculation
 - at simulated quark mass m: chiral behavior \Leftrightarrow ChPT predictions
 - at physical m : can reproduce $\langle r^2 \rangle_V$?

pion scalar form factor $F_S(q^2)$

 $\langle \pi(p')|S|\pi(p')\rangle = F_S(q^2), \quad F_S(q^2) = 1 + (\langle r^2 \rangle_S/6) q^2 + O(q^4)$

- ${\small O} \,$ chiral behavior of $\langle r^2 \rangle_S$
 - determination of $l_4 \iff l_4$ from F_{π}
 - ×6 NLO chiral log : $-6/(4\pi F)^2 \ln[M_\pi^2] \iff \langle r^2 \rangle_V : -1/(4\pi F)^2 \ln[...]$
- direct determination in LQCD
 needs disconnected 3-pt. functions

 only 2 previous studies ignoring disconnected diagram (JLQCD, 2005; BGR, 2007)

Sar

1. introduction

this work

JLQCD / TWQCD collaborations, arXiv:0905.2465

calculate pion form factors in $N_f = 2$ lattice QCD

- employ overlap quarks
 - exact chiral symmetry \Rightarrow straightforward comparison w/ ChPT
- use all-to-all quark propagator
 - disconnected 3-pt. functions for $F_S(q^2)$
 - improved statistical accuracy $F_{V,S}(q^2)$

outline

- simulation method
- determination of $F_V(q^2)$ and $F_S(q^2)$
- parametrization of q^2 dependence of $F_{V,S}(q^2)$
- chiral extrapolation of $\langle r^2 \rangle_V$, $\langle r^2 \rangle_S$, ...

イロト 不得 トイヨト イヨト 三日

2.1 simulation method : configuration generation

set-up

- $N_f = 2$ QCD w/ degenerate u and d quarks
- improved gauge action (Iwasaki, 1982)
- overlap quark action (Narayanan-Neuberger, 1995; Neuberger, 1998)
 - ⇒ exact chiral symmetry on the lattice (Hasenfratz, 1998; Lüscher, 1998)

parameters

- $a = 0.1184(3)(21) \text{ fm} \iff \text{overlap : no } O(a) \text{ errors}$ (input : $r_0 = 0.49 \text{ fm}$ (Sommer, 1994))
- $16^3 \times 32$: $L \sim 1.9$ fm + NLO ChPT finite V correction (FVC)
- \bullet 4 m_{ud} 's : $m\simeq m_s/6-m_s/2$, $M_\pi\simeq 290-520~{
 m MeV}$
- 100 independent conf.s at each m (100 \times 100 HMC trajectories)

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

simulation method

configuration generation measurement

2.2 simulation method : measurements

all-to-all quark propagator

• propagation from any lattice site to any site (TrinLat, 2005; JLQCD/TWQCD, 2009)

$$D^{-1} = \sum_{k=1}^{12VT} \frac{1}{\lambda^{(k)}} u^{(k)} u^{(k)\dagger} = \sum_{k=1}^{N_{\text{eigen}}} \frac{1}{\lambda^{(k)}} u^{(k)} u^{(k)\dagger} + (1 - P_{\text{low}}) \sum_{r=1}^{N_r} \frac{x^{(r)}}{N_r} \eta^{(r)\dagger}$$

low-mode contributions \leftarrow evaluated exactly w/ eigenmodes of D high mode contributions \leftarrow noise method (stochastic)

 \Rightarrow evaluate disconnect diagrams; improve statistical accuracy

cf. conventional method

point-to-all prop: a fixed site \rightarrow any site

parameters

- $|q^2| \lesssim 1.7~{
 m GeV}^2$ (w/ $|{f p}| \le \sqrt{3}$ in units of $2\pi/L$)
- periodic boundary condition (different conditions \Rightarrow re-calculation of \underline{D}^{-1})

vector form factor

3.1 determination of form factors : $F_V(q^2)$

 $C_{\pi V_{4}\pi}^{\mathsf{conn}}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}') \quad \rightarrow \quad \frac{\sqrt{Z_{\pi}(|\mathbf{p}|) Z_{\pi}(|\mathbf{p}'|)}}{4E(p)E(p') Z_{V}} e^{-E(p)\Delta t} e^{-E(p')\Delta t'} \langle \pi(p') | V_{4} | \pi(p) \rangle$

$$C_{\pi\pi}^{\mathsf{conn}}(\Delta t; \mathbf{p}) \to \frac{\sqrt{Z_{\pi}(|\mathbf{p}|) Z_{\pi}(|\mathbf{p}'|)}}{2E(p)} e^{-E(p)\Delta t}, \qquad \sqrt{Z_{\pi}(|\mathbf{p}|)} = \langle \pi(p) | O_{\pi}(\mathbf{p})^{\dagger}$$

$$R_4(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}') = \frac{C_{\pi V_4 \pi}(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')}{C_{\pi \pi}(\Delta t; \mathbf{p}) C_{\pi \pi}(\Delta t'; \mathbf{p}')} = \frac{\langle \pi(p') | V_4 | \pi(p) \rangle}{\sqrt{Z_{\pi, |\mathsf{cl}|} Z_{\pi, |\mathsf{cl}|}}}$$

$F_V(\Delta t, \Delta t'; q^2)$	=	$2M_{\pi}$	$R_4(\Delta t, \Delta t'; \mathbf{p}, \mathbf{p}')$	$(q^2 = (p' - p)^2)$		
		E(p) + E(p')	$R_4(\Delta t, \Delta t'; 0, 0)$			
			< □	▶ ▲圖 ▶ ▲ 콜 ▶ ▲ 콜 ▶	-2	\mathcal{O}
					_	

vector form factor scalar form factor

3.1 determination of form factors : $F_V(q^2)$

• statistical accuracy $\approx 3-5\%$

all-to-all prop \Rightarrow can take average over source location x

- constant fit to $F_V(\Delta t, \Delta t'; q^2)$
- include finite V correction from one-loop ChPT (Borasoy-Lewis, 2005; Bunton et al., 2006)

1

イロト イポト イヨト イヨト

vector form factor scalar form factor

3.2 determination of form factors : $F_S(q^2)$

ratio method

• normalize at smallest nonzero $|q_{ref}^2|$ ($\mathbf{p}_{ref} = 1$, $\mathbf{p}_{ref}' = 0$) relatively large uncertainty in $F_S(\Delta t, \Delta t'; 0)$ \Leftrightarrow VEV subtraction : $C_{\pi S\pi}^{sngl}(q^2 = 0) = C_{\pi S\pi}^{conn}(0) - (C_{\pi S\pi}^{disc}(0) - C_{\pi S\pi}^{vev}(0))$

vector form factor

3.2 determination of form factors : $F_S(q^2)$

• statistical accuracy $\approx 5-10\% \iff$ inclusion of $C_{\pi S\pi}^{\text{disc}}$ constant fit + NLO FVC $\Rightarrow F_S(q^2 \neq 0)/F_S(q_{\text{ref}}^2)$

● disconnected diagram ⇒ significant contribution

イロト イポト イヨト イヨト

1

 q^2 dependence

vector form factor scalar form factor

4.1 q^2 dependence : $F_V(q^2)$

• close to VMD near $q^2 = 0 \Rightarrow$ include ρ meson pole into param. form

approximate small deviation (higher poles/cuts) by generic polynomial form

$$F_V(q^2) = rac{1}{1-q^2/M_
ho^2} + c\,q^2 + d\,(q^2)^2 + e\,(q^2)^3 = 1 + rac{\langle r^2
angle_V}{6}\,q^2 + c_V\,(q^2)^2 + ...$$

fits up to (q²)² and (q²)³ corrections ⇒ reasonable χ² and consistent results
 employ fit with (q²)³ correction

 q^2 dependence

vector form factor scalar form factor

4.1 q^2 dependence : $F_V(q^2)$

can be fitted by NNLO ChPT formula (Gasser-Meißner, 1991; Bijens et al., 1998) ?

- $O(q^4)$ contrib. (NNLO) $\lesssim 3$ % at $|q^2| \lesssim 0.02 \, {\rm GeV}^2$
- $O(q^6)$ contrib (NNNLO) \lesssim 3 % at $|q^2| \lesssim 0.3 \, {\rm GeV}^2$
- periodic boundary condition $\Rightarrow |q^2| \gtrsim 0.3 \, {\rm GeV}^2$ on our lattice

Sac

- in this work: do not parametrize q^2 dependence based on ChPT
- twisted boundary condition (Bedaque, 2004) can explore $q^2 \sim 0$ (RBC/UKQCD \rightarrow talk by Jüttner; ETM,2008)
 - \Rightarrow need to re-calculate all-to-all propagator

• $M_{\pi}^2 \lesssim 0.3 \,\mathrm{GeV}^2 \Rightarrow \mathrm{NNLO} \,\mathrm{ChPT} \,\mathrm{fit} \,\mathrm{for} \, M_{\pi}^2 \,\mathrm{dependence} \,\mathrm{of} \,\langle r^2 \rangle_{V,S}$

 q^2 dependence

vector form factor scalar form factor

4.2 q^2 dependence : $F_S(q^2)$

with our statistical accuracy ...

• can be fitted to cubic / quartic forms w/ reasonable χ^2

$$F_{S}(q^{2}) = 1 + rac{\langle r^{2}
angle_{S}}{6} q^{2} + c_{S} (q^{2})^{2} + d (q^{2})^{3} + e (q^{2})^{4}$$

• cubic and quartic fits \Rightarrow consistent results for $\langle r^2 \rangle_S$

 \Rightarrow ill-determined c_S (\gtrsim 100 % error) ...

• $\langle r^2 \rangle_S$ from cubic fit \Rightarrow the following analysis

590

w/ NLO ChPT formulae w/ NNLO ChPT formulae

5.1 chiral extrapolation : w/ NLO ChPT formulae

$\begin{array}{lll} \underline{\operatorname{charge radius}\,\langle r^2\rangle_V} & \underline{\operatorname{scalar radius}\,\langle r^2\rangle_S} \\ \langle r^2\rangle_V &=& -(1/NF^2)(1+Nl_6^r) & \langle r^2\rangle_S &=& (1/NF^2)(-13/2+6Nl_4^r) \\ && -(1/NF^2)\ln[M_\pi^2/\mu^2] & -(6/NF^2)\ln[M_\pi^2/\mu^2] \end{array}$

 $(N = (4\pi)^2; \mu = 4\pi F; \text{ use } F = 79.0(^{+5.0}_{-2.6}) \text{ MeV from } F_{\pi} \text{ (JLQCD/TWQCD, 2008)})$

T. Kaneko F

Pion form factors from lattice QCD with exact chiral symmetry

5.1 chiral extrapolation : w/ NLO ChPT formulae

• recent calculation of $\langle r^2 \rangle_V$ in $N_f = 2$ QCD by ETM (ETM, 2008) twisted mass quarks, a = 0.09 fm, L = 2.2 fm, twisted boundary

⇒ failure of NLO fit : not be due to $a \neq 0$, FVC, ... (due to $N_f = 2$?)

- q^2 dep. of $F_V(q^2)$: NNLO contribution is not small at $|q^2| \gtrsim (150 \text{ MeV})^2$ \Rightarrow significant NNLO contribution in m_q dep. of $\langle r^2 \rangle_V$ at $M_\pi \gtrsim 150 \text{ MeV}$ (?)
- $O(q^4)$ dep. of $F_V \Rightarrow c_V \Rightarrow$ NNLO ChPT

5.2 chiral extrapolation : w/ NNLO ChPT formulae

NNLO formulae (Gasser-Meißner, 1991; Bijnens-Colangelo-Talavera, 1998)

5.2 chiral extrapolation : w/ NNLO ChPT formulae

an exercise

 $\langle r^2 \rangle_{V,S}$ at NNLO w/ phenomenological estimates of LECs

- $F = F_{\pi}/1.067$ from Colangelo-Dürr, 2004
- $O(p^4)$ couplings l_i^r from *Bijnens et al., 1998*, or *Colangelo et al., 2001* $\bar{l}_6 = 16.0, \quad \bar{l}_4 = 4.39, \quad \bar{l}_1 = -0.36, \quad \bar{l}_2 = 4.31, \quad \bar{l}_3 = 4.39$
- $O(p^6)$ couplings $r_{X,i}^r$ from *Bijnens et al.*, 1998 (\Leftarrow resonance saturation) $r_{V,1} = 2.5 \times 10^{-4}$, $r_{V,2} = 2.6 \times 10^{-4}$, $r_S = -3.0 \times 10^{-5}$

NNLO contribution may modify M_{π}^2 dependence significantly

w/ NLO ChPT formulae w/ NNLO ChPT formulae

5.2 chiral extrapolation : w/ NNLO ChPT formulae

simultaneous fit to $\langle r^2 \rangle_V$ and c_V

(only) 4 parameters for 8 data ; l_6^r , $l_{1,2}^r$, $r_{V,1}$, $r_{V,2}$ ($l_{1,2}^r = l_1^r - l_2^r/2$)

• describe our data w/ $\chi^2/dof = 0.7$

• consistent with expr't (with larger errors than NLO analysis...)

 $\langle r^2 \rangle_V = 0.411(26) \text{ fm}^2, \ c_V = 3.26(21) \text{GeV}^{-4}$

 $\Leftrightarrow c_V[\text{GeV}^{-4}] = 3.85(60)$ (Bijnens et al., 1998); 4.0(5) (Guo et al., 2008);

3.5-4.0 (Ananthanarayan-Ramaman, 2008)

w/o phenomenological inputs

- イロト (四) (三) (三) (三) (日) (日)

5.2 chiral extrapolation : w/ NNLO ChPT formulae

simultaneous fit to $\langle r^2 \rangle_V$, $\langle r^2 \rangle_S$ and c_V

• inclusion of $\langle r^2 \rangle_S \Rightarrow$ additional parameters : l_4^r , l_1^r (or l_2^r), l_3^r , r_S^r

• fix $\bar{l}_2 = 4.31(11)$ (Colangelo et al., 2001), $\bar{l}_3 = 3.38(56)$ (JLQCD/TWQCD, 2008)

• free parameters : l_4^r ($\Leftrightarrow l_4^r$ from F_π) and (poorly known) r_S^r

• 6 fit parameters for 12 data : l_6^r , l_4^r , $l_{1,2}^r$, $r_{V,1}^r$, $r_{V,2}^r$, r_S^r

• results for vector channel : $\langle r^2 \rangle_V$, c_V , l_6^r , $l_{1,2}^r$, $r_{V,1}$, $r_{V,2}$ inclusion of $r_S \Rightarrow$ does not change significantly

w/ NLO ChPT formulae w/ NNLO ChPT formulae

5.2 chiral extrapolation : w/ NNLO ChPT formulae

• $\chi^2/dof = 1.3$

• $r_{V,S}$, c_V

- reasonable accuracy
- consistent w/ expr't

systematic uncertainties

- chiral extrap. : repeat whole analysis w/o data at largest m
- input for l_2^r , l_3^r : shifted by their uncertainty
- input to fix scale : test $r_0 = 0.47$ fm (MILC, 2004)
- discretization error : $O((a\Lambda)^2) \sim 3\%$

イロト イポト イヨト イヨト

Sar

5.2 chiral extrapolation : w/ NNLO ChPT formulae

 $\langle r^2 \rangle_V = 0.409(23)(37) \text{ fm}^2, \ \langle r^2 \rangle_S = 0.617(79)(66) \text{ fm}^2, \ c_V = 3.22(17)(36) \text{ GeV}^{-4}$

- o consistent w/ experiment w/ 10-15% accuracy
- Iargest uncertainties : i) input to fix scale (r₀), ii) chiral fit
- $$\begin{split} \bar{l}_6 &= 11.9(0.7)(1.0) \\ \Leftrightarrow \quad \bar{l}_6 &= 16.0(0.9) \text{ (Bijnens et al., 1998; } F_{V,S}\text{)}, \quad 15.22(39) \text{ (Gonz'alez-Alonso et al., 2008; } \tau\text{)} \\ \bar{l}_4 &= 4.09(50)(52) \\ \Leftrightarrow \quad \bar{l}_4 &= 4.12(56) \text{ (JLQCD/TWQCD, 2008; } F_{\pi}\text{)}, \quad \bar{l}_4 &= 4.39(22) \text{ (Colangelo et al., 2001)} \end{split}$$
- $ar{l}_1 ar{l}_2 = -2.9(0.9)(1.3)$ \Leftrightarrow $ar{l}_1 ar{l}_2 = -4.67(60)$ (Colangelo et al., 2001)
 - Iargest uncertainty : chiral fit
 - o consistent w/ lattice / phenomenological estimates
 except l₆ ⇔ F = 79 MeV slightly smaller than phenomenology

 $O(p^{6}) \text{ couplings at } \mu = 4\pi F$ $r_{V,1}^{r} = -1.0(1.0)(2.5) \times 10^{-5}, \ r_{V,2}^{r} = 4.00(17)(64) \times 10^{-5}, \ r_{\mathfrak{S}} = 1.74(36)(78) \times 10^{-4}, \ r_{V,2}^{r} = 4.00(17)(64) \times 10^{-5}, \ r_{\mathfrak{S}} = 1.74(36)(78) \times 10^{-4}, \ r_{V,1}^{r} = -1.0(1.0)(2.5) \times 10^{-5}, \ r_{V,2}^{r} = 4.00(17)(64) \times 10^{-5}, \ r_{\mathfrak{S}} = 1.74(36)(78) \times 10^{-4}, \ r_{V,2}^{r} = 4.00(17)(64) \times 10^{-5}, \ r_{\mathfrak{S}} = 1.74(36)(78) \times 10^{-4}, \ r_{V,2}^{r} = 4.00(17)(64) \times 10^{-5}, \ r_{\mathfrak{S}} = 1.274(36)(78) \times 10^{-4}, \ r_{V,2}^{r} = 4.00(17)(64) \times 10^{-5}, \ r_{\mathfrak{S}} = 1.274(36)(78) \times 10^{-4}, \ r_{V,2}^{r} = 4.00(17)(64) \times 10^{-5}, \ r_{\mathfrak{S}} = 1.274(36)(78) \times 10^{-4}, \ r_{V,2}^{r} = 4.00(17)(64) \times 10^{-5}, \ r_{\mathfrak{S}} = 1.274(36)(78) \times 10^{-4}, \ r_{\mathfrak{S}} =$

6. summary

pion form factors in $N_f = 2$ lattice QCD

- exact chiral symmetry
 - direct comparison w/ (continuum) ChPT
- all-to-all propagators
 - accurate determination of $F_{V,S}(q^2)$
 - ${\ensuremath{\,\circ\,}}$ (the 1st) calculation of $F_S(q^2)$ w/ disconnected diagrams
- q^2 dependence
 - $O(q^6)$ contribution is not small at $|q^2|\gtrsim (550\,{\rm MeV})^2$
 - generic polynomial form (and pole contribution for $F_V(q^2)$)
- chiral fit
 - $O(p^2)$ ChPT fails to reproduce $\langle r^2 \rangle_S$ at 300 $\lesssim M_{\pi}$ [MeV] \lesssim 500
 - chiral fit based on ${\cal O}(p^4)~{\rm ChPT}~~\Rightarrow~~\langle r^2\rangle_{V,S},\,c_V$ w/ 10–15% accuracy
- Inture directions
 - extension to $N_f = 3$: on-going
 - better control of q² interpolation : twisted boundary condition; dispersive bound; model indep. information of scalar resonance(s) at simulated m

Sac