Electromagnetic structure of the lowest-lying baryons in covariant chiral perturbation theory

J. Martin Camalich, L. S. Geng, L. Alvarez-Ruso and M. J. V. Vacas

IFIC, Valencia University, Spain

July 9, 2009

OUTLINE

Introduction

- Power Counting in $B\chi PT$
- Inclusion of the decuplet-resonances
- 2 Magnetic moments of the baryon-octet
 - A historical introduction
 - Calculation and renormalization
 - SU(3)-breaking of the baryon-octet MM in $B\chi PT$
 - Results and Comparison
 - Contributions of decuplet resonances at NLO
- 8 Electromagnetic structure of decuplet-baryons
- 4 Conclusions

Baryon ChPT and power counting: Problems & Solutions

- Baryon mass M₀: New large scale
- Diagrams with arbitrarily large number of loops contribute to lower orders
 >Power Counting is lost!

(Gasser et al.)

- Heavy Baryon χ PT (Jenkins & Manohar):
 - Non-relativistic expansion: Considers $M_0 \simeq \Lambda_{ChSB}$;
 - Recovers the power counting pattern of meson $\chi {\sf PT}.$
- Relativistic Baryon χ PT:
 - Power counting breaking pieces: Analytical structure!;
 - Two remarkable schemes:
 - Infrared baryon χ PT (Becher and Leutwyler);
 - EOMS-scheme (Gegelia, Japaridze and Scherer).

Inclusion of the Decuplet-resonances

- Motivation: We perform perturbations on $m_K/\Lambda_{\chi SB} \sim 0.5$ that is over the scale for the onset of Decuplet resonances $\frac{M_D M_B}{\Lambda_{\chi SB}} \sim 0.3$.
- Problem of consistency
 - Rarita-Schwinger (RS) representation of relativistic 3/2-fermions: $\psi^{\mu}(x)$. RS is a field with 16 components of which only 8 (4 massless) are "physical".
 - How to introduce couplings to the RS spinor that don't activate 1/2 modes? Field-redefinition formalism: Consistent couplings "equivalent" to phenomenological ones Pascalutsa et al., 1999.
- Problem of higher-order divergencies

$$s^{lphaeta}(p) = rac{p+m}{m^2-p^2} \left[g^{lphaeta} - rac{1}{D-1} \gamma^{lpha} \gamma^{eta} - rac{1}{(D-1)m} (\gamma^{lpha} p^{eta} - \gamma^{eta} p^{lpha}) - rac{D-2}{(D-1)m^2} p^{lpha} p^{eta}
ight]$$

- RS propagator has a problematic high-energy behavior.
- Higher-order ∞ 's regularized in $\overline{MS} \rightarrow \text{Regularization-scale}(\mu)$ dependence.
- Problem of power-counting breaking
 - We use the EOMS-scheme and also obtain the HB limit (ϵ -expansion)

$\chi {\rm PT}$ and the baryon-octet MM: A historical introduction

- Exact SU(3) symmetry: Coleman-Glashow relations (1961):
 - Relate the MM to 2 parameters, i.e. the measured proton and neutron MM;
 - Fit to data: Succesful although indicates sizable SU(3)-breaking effects.
- Leading order contributing to SU(3)-breaking fails to give a good description of data in different χ PT approaches
 - The same 2 parameters of the SU(3)-symmetric description;
 - Pionnering works of Caldi and Pagels on leading chiral corrections (1974).
 - Systematic HBχPT calculations of Jenkins and Manohar (1993) and Steininger and Meissner (1997).
 - Infrared relativistic $B\chi PT$ by Kubis and Meissner (2001).
- Calculations up to **next-to-leading** SU(3)-breaking have become standard:
 - Good description with 7 parameters (for 8 measured MM);
 - Inclusion of the decuplet explored Puglia and Musolf (2000).
- Relativistic EOMS-BχPT: improved leading SU(3)-breaking pattern⇒
 L.S.Geng, JMC, L. Alvarez-Ruso, M.J. Vicente Vacas, PRL 101,222002 (2008)

Magnetic moments (MM) of the baryon octet: Introduction

- The general vertex can be parameterized by two form factors: $\langle \psi(p')|J^{\mu}|\psi(p)\rangle = |e|\bar{u}(p')\Big\{\gamma^{\mu}F_1(t) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_2(t)\Big\}u(p).$
- At $q^2=0$: $F_1(0)=Q$ (charge), $F_2(0)=\kappa$ (anomalous magnetic moment).
- The fermion (baryon) MM: $\mu \equiv (Q + \kappa) \frac{|e|}{2M}$
- SU(3)-flavor symmetry⇒Coleman-Glashow relations:

$$\begin{split} \mu_{\Sigma^+} &= \mu_p, \qquad \mu_{\Lambda} = \frac{1}{2}\mu_n, \qquad \mu_{\Xi^0} = \mu_n, \\ \mu_{\Sigma^-} &= -(\mu_n + \mu_p), \qquad \mu_{\Xi^-} = \mu_{\Sigma^-}, \qquad \mu_{\Lambda\Sigma^0} = -\frac{\sqrt{3}}{2}\mu_n, \end{split}$$

• The octet-baryons MM are very well measured quantities!

Baryon octet MM: Analytical results at NLO

• SU(3)-symmetric description parameterized by b_6^D and b_6^F :

 $\kappa_{B}^{(2)} = \alpha_{B} b_{6}^{D} + \beta_{B} b_{6}^{F}$

• SU(3)-breaking provided by loop-functions $H^{(b)}(m)$ and $H^{(c)}(m)$:

$$\kappa_{B}^{(3)} = \frac{1}{8\pi^{2} F_{\phi}^{2}} \left(\sum_{r=\pi,K} \xi_{BM}^{(b)} H^{(b)}(m_{r}) + \sum_{r=\pi,K,\eta} \xi_{BM}^{(c)} H^{(c)}(m_{r}) \right)$$

$$H^{(b)}(m) = -M^{2} + 2m^{2} + \frac{2m(m^{4} - 4m^{2}M^{2} + 2M^{4})}{M^{2}\sqrt{4M^{2} - m^{2}}} \arccos\left(\frac{m}{2M}\right) + \frac{m^{2}}{M^{2}} (2M^{2} - m^{2}) \log\left(\frac{m^{2}}{M^{2}}\right),$$

$$H^{(c)}(m) = M^{2} + 2m^{2} + \frac{2m^{3}(m^{2} - 3M^{2})}{M^{2}\sqrt{4M^{2} - m^{2}}} \arccos\left(\frac{m}{2M}\right) + \frac{m^{2}}{M^{2}} (M^{2} - m^{2}) \log\left(\frac{m^{2}}{M^{2}}\right).$$

• α_B , β_B and $\xi_{BM}^{(b,c)}$ depend on known MBB and Clebsch-Gordan coefficients.

Baryon octet MM: Renormalization at NLO

• **EOMS**: Power counting breaking pieces M_B^2 absorbed by b_6^D and b_6^F :

$$\begin{split} b_6^D &\longrightarrow \tilde{b}_6^D = b_6^D + \frac{3DFM_B^2}{2\pi^2 F_{\phi}^2}, \quad b_6^F &\longrightarrow \tilde{b}_6^F = b_6^F \\ H^{(b)} &\longrightarrow \tilde{H}^{(b)} = H^{(b)} + M_B^2, \qquad H^{(c)} &\longrightarrow \tilde{H}^{(c)} = H^{(c)} - M_B^2. \end{split}$$

• **HB** results obtained setting $M_B \sim \Lambda_{\chi SB}$ in **EOMS** results:

$$ilde{H}^{(b)}(m) \simeq \pi m M_B + \mathcal{O}(p^2), \qquad ilde{H}^{(c)}(m) \simeq \mathcal{O}(p^2).$$

• IR results obtained substracting from $H^{(b,c)}$ the corresponding regular parts:

$$R^{(b)}(m) = -M_B^2 + \frac{19m^4}{6M_B^2} - \frac{2m^6}{5M_B^4} - \frac{m^8}{21M_B^6} + \dots ,$$

$$R^{(c)}(m) = M_B^2 + 2m^2 + \frac{5m^4}{2M_B^2} - \frac{m^6}{2M_B^4} - \frac{m^8}{15M_B^6} + \dots$$

• Loops depend on physical meson masses, $M_0\simeq 0.940$ GeV and $F_{\phi}\simeq 1.17 F_{\pi}.$

Baryon-Octet MM: Numerical results at NLO

	p	п	Λ	Σ^{-}	Σ^0	Σ^+	Ξ-	Ξ°	$\Lambda\Sigma^0$	$\tilde{\chi}^2$	
C-G	2.56	-1.60	-0.80	-0.97	0.80	2.56	-0.97	-1.60	1.38	0.46	
HB	3.01	-2.62	-0.42	-1.35	0.42	2.18	-0.52	-0.70	1.68	1.01	
IR	2.08	-2.74	-0.64	-1.13	0.64	2.41	-1.17	-1.45	1.89	1.83	
EOMS	2.58	-2.10	-0.66	-1.10	0.66	2.43	-0.95	-1.27	1.58	0.18	
Exp.	2.79	-1.91	-0.61	-1.16		2.46	-0.65	-1.25	1.61		
$\tilde{z}^2 - \sum (u - u)^2$											

$$ilde{\chi}^2 = \sum \left(\mu_{th} - \mu_{expt} \right)^2$$

• Study of the convergence of the chiral series (LO and NLO):

$$\begin{split} \mu_p &= 3.47 \, \left(1-0.257\right), \quad \mu_n = -2.55 \, \left(1-0.175\right), \quad \mu_\Lambda = -1.27 \, \left(1-0.482\right), \\ \mu_{\Sigma^-} &= -0.93 \, \left(1+0.187\right), \quad \mu_{\Sigma^+} = 3.47 \, \left(1-0.300\right), \quad \mu_{\Sigma^0} = 1.27 \, \left(1-0.482\right), \\ \mu_{\Xi^-} &= -0.93 \, \left(1+0.025\right), \quad \mu_{\Xi^0} = -2.55 \, \left(1-0.501\right), \quad \mu_{\Lambda\Sigma^0} = 2.21 \, \left(1-0.284\right). \end{split}$$

- Reasonable convergence of chiral series: Corrections $\lesssim m_K / \Lambda_{ChSB} \sim 50\%$.
- The EOMS NLO-calculation improves the C-G relations!

J. Martin Camalich @ ChD09 (Bern Univ.)

EM structure of baryons in ChPT

Baryon octet MM: Graphical comparison

 $x \equiv m/m_{phys}$ with m the meson masses

- The three approaches agree in the vicinity of the chiral limit.
- IR and EOMS coincide up to $x \sim 0.4$. IR description then get worse.
- Shaded area(s) represent the variation 0.8GeV $\leq M_0 \leq 1.1$ GeV.
- EOMS provides a realistic SU(3)-breaking mechanism for MM!

J. Martin Camalich @ ChD09 (Bern Univ.)

Baryon octet MM:Inclusion of the Decuplet-resonances

	p	n	٨	Σ^{-}	Σ^0	Σ^+	Ξ-	Ξ0	$\Lambda\Sigma^0$	$\tilde{\chi}^2$
C-G	2.56	-1.60	-0.80	-0.97	0.80	2.56	-0.97	-1.60	1.38	0.46
HB-O	3.01	-2.62	-0.42	-1.35	2.18	0.42	-0.70	-0.52	1.68	1.01
HB-OD	3.47	-2.84	-0.17	-1.42	1.77	0.17	-0.41	-0.56	1.86	2.58
C-0	2.60	-2.16	-0.64	-1.12	0.64	2.41	-0.93	-1.23	1.58	0.18
C-OD	2.61	-2.23	-0.60	-1.17	0.59	2.37	-0.92	-1.22	1.65	0.22
Exp.	2.79	-1.91	-0.61	-1.16	—	2.46	-0.65	-1.25	1.61	_

• Par. C=1.0, $M_B = 1.151$ GeV, $M_D = 1.428$ GeV, $F_{\phi} \simeq 1.17F_{\pi}$, $\mu=1$ GeV

• The problem of consistency has also been investigated:

L.S.Geng, JMC, M.J. Vicente Vacas, PLB 676,63 (2009)

EM structure of baryons in ChPT

EM structure of decuplet-baryons at NLO in $B\chi PT$

- Motivation: Electromagnetic structure of $\Delta(1232)$
 - Experiments to measure MDMs of Δ^{++} and Δ^{+} Kotulla, Pr.Nuc.Phys (2008)
 - Increasing effort to calculate in IQCD Leinweber et al. (1992), Lee et al. (2005), Aubin et al. (2008), Alexandrou et al. (2009), Boinepalli et al. (2009),...
 - Theoretical predictions: Quark models, QCD sum rules, large N_c, EFT,...
- **Goal**: Predict the EM structure of decuplet ($\Delta(1232)$) with covariant $B\chi PT$ $\langle T(p')|J^{\mu}|T(p)\rangle = -\bar{u}_{\alpha}(p') \left\{ \left[F_{1}^{*}(\tau)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{D}}F_{2}^{*}(\tau) \right] g^{\alpha\beta} + \left[F_{3}^{*}(\tau)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{D}}F_{4}^{*}(\tau) \right] \frac{g^{\alpha}g^{\beta}}{4M_{D}^{2}} \right\} u_{\beta}(p)$
 - $F_i^*(0) \Rightarrow \text{EM}$ static observables: μ (MDM), \mathcal{Q} (EQM) and O (MOM)
 - Up-to $\mathcal{O}(p^3)$: one LEC appears for the MDMs and one for the EQMs
 - LEC for MDMs fixed with $\mu_{\Omega^-}=-2.02~\mu_{\it N}$
 - \bullet LEC for EQMs could be fixed with IQCD result for \mathcal{Q}_{Ω^-}
 - MOMs come as a prediction

Predictions of $B\chi PT$ on the MDMs of the decuplet at NLO

Values in the table in μ_N

 $\bullet\,$ The results for the Δ^{++} and Δ^{+} are compatible with PDG values:

 $\mu_{\Delta^{++}} = 5.6 \pm 1.9 \mu_{\text{N}}$, $\mu_{\Delta^{+}} = 2.7^{+1.0}_{-1.3} \pm 1.5 \pm 3 \mu_{\text{N}}$

• The HB result for Δ^{++} is $\mu_{\Delta^{++}} = 7.94 \mu_N$

More details and results for EQMs, MOMs and charge radii:

L.S.Geng, JMC, M.J. Vicente Vacas arXiv:0907.0631 [hep-ph]

• NLO fully relativistic B χ PT (EOMS) calculation of Baryon octet MMs:

- Incorporates (higher-order) relativistic corrections.
- Consistent with analyticity
- Provides a realistic SU(3)-breaking pattern of baryon-octet MM.
- The NLO improvement prevails when decuplet resonances are included.
- The comparison with HB and IR suggest that in SU(3)-B_XPT to keep proper analytic properties and full covariance is of the most importance
- NLO calculation of the decuplet MDMs
 - One LEC fixed with $\mu_{\Omega^-} \Rightarrow$ Predictions on μ_{Δ^+} and $\mu_{\Delta^{++}}$:

 $\mu_{\Delta^{++}} = 6.04\mu_N; \quad \mu_{\Delta^+} = 2.84\mu_N$

- $\bullet\,$ The LEC ruling the EQM can be fixed using IQCD result for Ω^-
- MOMs come as prediction

Baryon octet MM: Uncertainties in decuplet contributions

- Improvement over CG for 0.7 GeV $\leq \mu \leq \!\! 1.3$ GeV
- Smooth dependence on the average baryon mass ($\delta=0.231$ GeV)
- The decuplet contributions vanish at $\delta \to \infty$: Decoupling of the decuplet
- Covariant O.+D. NLO-calculation improves the C-G relations!