Precision Measurements of Electroproduction of π^0 near Threshold: A Test of Chiral QCD Dynamics

John R.M. Annand Department of Physics and Astronomy

for Jefferson Laboratory Experiment E04-007

Spokespersons: J. Annand, D. Higinbotham, R. Lindgren, B. Moffit, V. Nelyubin, and B. Norum Ph.D. students K. Chirapatpimol, M. Shabestari, and the Hall A collaboration

Introduction

• Chiral Perturbation Theory (χ PT): EFT consistent with the (approximate) chiral symmetry of QCD (as well as P and C). $\mathcal{L}_{\chi_{PT}}$ expanded as power series in (m_{π}/M_{N}) and (q/M_N). χ PT \rightarrow low-energy dynamics of QCD. The π is the Goldstone Boson

• HBχPT π-N interactions V.Bernard, N.Kaiser, U.-G.Meißner, NP B383, 442 (1992), NP A607,379(1996), A633,695E(1998), Z.Phys C70, 483 (1996).

• Pion Loop corrections \rightarrow non-analytical term in m_n...old LET amplitudes smooth fn(m_n)....Taylor Series.

• Threshold $\gamma + p \rightarrow p + \pi^0$ (SACLAY, MAINZ) showed the s-wave LET were deficient

• Constrain required range of power series by performing measurements under conditions where the factors governing the expansion are small.....soft π near threshold.

• Details of interaction are absorbed into Low Energy Constants (LECs). LECs are fitted to data (or resonance saturation or from LQCD)

• Much of the testing of HB χ PT near threshold $\gamma^{(*)}$ +p \rightarrow p + π^0 . Virtual photons in addition give the longitudinal response.

- Real photon results so in good agreement with HB χ PT.
- Electroproduction data shows significant discrepancies.

Previous $\gamma^{(*)}+p \rightarrow p+\pi$ Tests of HB χ PT

Some previous work

(not an exhaustive list)

π^0 Photoproduction

SAL J.C. Bergstrom et al., PRC53, R1052 (1996) Mainz A. Schmidt et al., PRL 87,232501 (2001) CB@MAMI (Mainz) D.Hornidge et al. 2004 -

π^0 Electroproduction

NIKHEF H.B. van den Brink et al., PRL 74, 3561 (1995) Mainz $Q^2 = 0.1$ M.O. Distler et al., PRL 80, 2294 (1998) $Q^2 = 0.05$ GeV/c dW = 0 - 4 MeV H. Merkel et al., PRL 88, 012301 (2002) $Q^2 = 0.05$ GeV/c dW = 0 - 40 MeV M. Weiss et al., EPJ A38, 27 (2008)

Photoproduction $H(\gamma, \pi^0)p$

SAL and Mainz differential cross section measurements in good agreement with HB χ PT.

Mainz $\Sigma(\theta) \rightarrow P_1, P_2$ (free of LEC) Near-threshold measurements of polarisation observables continue at Mainz using the 4π Crystal Ball & TAPS

Electroproduction $H(e,e'p)\pi^0$

NIKHEF and 1st Mainz measurements at $Q^2 \sim 0.1$ (GeV/c)² HB χ PT fits made on these data.

Subsequent Mainz measurement @ Q^2 = 0.05 (GeV/c)² quite steep Q² dependence. Mainz (2008) beam helicity asymmetry $\rightarrow \sigma_{LT}$ not in agreement with HB χ PT

Jefferson Lab. E04-007 1st proposed 2001, run in 2008

Published Results H(e,e'p) π^0 A1-MAMI

Extracted and Predicted Multipole Strength @ Threshold

Source	Q² (GeV/c)²	E ₀₊	L ₀₊	P_{23}^{2}	P ₁	P ₂	P ₃	P ₄	P ₅
ΜΑΜΙ	0.00	-1.33		111.00	9.46±0.28	$-9,5\pm 0.28$	11.32±0.34		
ΗΒχΡΤ	0.00	-1.14	-1.70	105.00	9.30			-0.60	-0.20
MAID	0.00	-1.23	-1.29	82.00	9.07	-10.68	7.07	-3.00	2.20
DR	0.00	-1.29		86.7	9.64	-10.29	8.22		
MAMI	0.05	0.57 ± 0.11	-1.29 ± 0.02	100 ± 3.0					
AmPS	0.05		-1.57 ± 0.96						
ΗΒχΡΤ	0.05	0.27	-1.55	353.00	16.50			-0.72	-0.20
MAID	0.05	0.76	-1.40	250.00	15.00			-1.75	1.90
MAMI	0.10	0.58 ± 0.18	-1.38 ± 0.01	573 ± 11	15.1 ± 0.8			-2.3 ± 0.2	0.1 ± 0.3
AmPS	0.10	1.99 ± 0.3	-1.33	526 ± 7	16.4 ± 0.6			-1.0 ± 0.4	-1.0 ± 0.4
ΗΒχΡΤ	0.10	1.42	-1.33	571.00	20.10			-0.60	-0.10
MAID	0.10	2.20	-1.12	315.00	17.10			-1.10	1.40
DR	0.10	1.55	-1.41						

 $P_{1} = 3E_{1+} + M_{1+} - M_{1} \quad P_{2} = 3E_{1+} - M_{1+} + M_{1-}$ $P_{3} = 2M_{1+} + M_{1-} \qquad P_{4} = 4L_{1+} + L_{1-}$ $P_{5} = L_{1-} - 2L_{1+} \qquad P_{23}^{-2} = (P_{2}^{-2} + P_{3}^{-2})/2$

DR = Dispersion Relation Analysis S. Kamalov et al, PRC 66, 065206 (2002)

E04-007 in Hall-A of Jefferson Lab.

Originally proposed 2001

Re-proposed 2004

Finally scheduled 2007-8, data taking April -- May 2008.

Physics Goal:

Extract high precision measurement of

 $H(e,e'p)\pi^0$ differential cross section near threshold

Near-Threshold $H(e,e'p)\pi^0$ Some Experimental Considerations

 High beam energy not required... but if e' spectrometer can reach small angles can access low Q² region and maximise virtual

photon flux. $H(e, e'p)\pi^0$ cross section small at threshold

- Reaction identified by e' and p, π^0 not detected.
- Need sufficient energy resolution to obtain clean π^0 missing mass distribution.
- Close to threshold recoil p focused tightly about the γ^* direction. A reasonable lab. angular acceptance can catch all p.
- Low Q² implies low p momentum. Multiple scattering and energy loss in target and various components of the spectrometer detector stack must be accounted for carefully

Recoil p Kinematics near Threshold

Momentum Range p Spectrometer

Ellipses of constant ΔW (W relative to π threshold)

$H(e,e'p)\pi^0$ @ Hall-A of Jefferson Lab

Floor Plan of Experiment

Target and Scattering Chamber

6 cm long 2.5 cm Ø LH $_{_2}$ Cell with 200 μm Al Wall specially made for E04-007

New vacuum chamber Special flange with 76 µm Ti window for protons exiting to BigBite

The BigBite Spectrometer

Hadron Detector stack
2 of x-u-v MWDC +
∆E-E scintillator trigger planes

Can also be configured for e' MWDC + ... Threshold Cherenkov + Shower-PreShower Pb-Glass $G_{E_{P}}$, Transversity.....12 GeV Magnet: NIKHEF/Budker (Internal target facility AmPS) Simple non-focusing dipole ~1 T Momentum resolution ~ 5 x 10⁻³

Summary of E04-007 Production Kinematics

	Setting	Energy	BB	HRS	W _{min}	<q< b="">²></q<>	Charge
Calibrations and		(GeV)	(deg.)	(deg.)	(GeV)	(GeV/c) ²	(C)
Systematic Checks:	А	1.19	54.0	20.5	1.074	-0.15	0.36
	В	1.19	54.0	16.5	1.074	-0.10	0.31
• Lantalum elastic, e' in HRS	С	1.19	54.0	14.5	1.074	-0.08	0.42
abs. beam energy	D	1.19	54.0	12.5	1.074	-0.06	0.23
• PIOLOII EldSIC – E III HKS	Е	1.19	48.0	12.5	1.074	-0.06	0.38
Carbon elastic and inelastic	F	1.19	48.0	14.5	1.074	-0.08	0.55
beam energy and cross section	G	1.19	48.0	16.5	1.074	-0.10	0.68
• HRS elastic p(e,e')	н	1.19	48.0	20.5	1.074	-0.15	0.56
sieve-slit optics calibration	I.	1.19	43.6	20.5	1.074	-0.15	0.31
 BigBite Sieve Slit, 	J	1.19	43.6	16.5	1.074	-0.10	0.36
QE d(e,e'p) out-of-plane optics	К	1.19	43.6	14.5	1.074	-0.08	0.45
• Elastic H(e,e'p) collimated target cell	L	1.19	43.6	12.5	1.074	-0.06	0.22
 Elastic H(e,e'p) different dipole currents 	М	1.19	50.3	27.2	1.194	-0.21	0.02
in BigBite	N	2.32	54.0	13.2	1.074	-0.25	0.22
• Vary beam currents (1- 6 μa)	0	2.32	54.0	15.8	1.074	-0.35	0.31
rate effects	Q	2.32	54.0	18.2	1.074	-0.45	0.34
• MIVPC high voltage and threshold.							
Efficiency for p.							

• 1 KHz pulser:

computer dead time correction

BigBite optics already reasonably well known from prior G_{En} and Transversity measurements. Open spectrometer...detectors have direct view of target...rates in MWDC

Proton ID by δE -E (also use TOF)

Proton Tracking in BigBite

Open spectrometer: direct view of target....high rates

BigBite Optics Calibration: Online Analysis

$\pi^{\scriptscriptstyle 0}$ Missing Mass for a range of $Q^{\scriptscriptstyle 2}$

Expected Data Precision

HRS Optics: Sieve-Slit Collimator

