Precision Measurements of Electroproduction of π^{0} near Threshold: A Test of Chiral QCD Dynamics

John R.M. Annand
Department of Physics and Astronomy

for Jefferson Laboratory Experiment E04-007
Spokespersons: J. Annand, D. Higinbotham, R. Lindgren, B. Moffit,
V. Nelyubin, and B. Norum

Ph.D. students K. Chirapatpimol, M. Shabestari, and the Hall A collaboration

Introduction

- Chiral Perturbation Theory ($\chi \mathrm{PT}$): EFT consistent with the (approximate) chiral symmetry of QCD (as well as P and C). $\mathcal{L}_{\chi \text { PT }}$ expanded as power series in $\left(m_{\pi} / M_{N}\right)$ and $\left(q / M_{N}\right) \cdot \chi P T \rightarrow$ low-energy dynamics of QCD. The π is the Goldstone Boson
- HB $\mathrm{HPT} \pi$-N interactions V.Bernard, N.Kaiser, U.-G.Meißner, NP B383, 442 (1992), NP A607,379(1996), A633,695E(1998), Z.Phys C70, 483 (1996).
- Pion Loop corrections \rightarrow non-analytical term in m_{π}...old LET amplitudes smooth $\mathrm{fn}\left(\mathrm{m}_{\pi}\right) \ldots$...Taylor Series.
- Threshold $\gamma+p \rightarrow p+\pi^{0}$ (SACLAY, MAINZ) showed the s-wave LET were deficient
- Constrain required range of power series by performing measurements under conditions where the factors governing the expansion are small.....soft π near threshold.
- Details of interaction are absorbed into Low Energy Constants (LECs). LECs are fitted to data (or resonance saturation or from LQCD)
- Much of the testing of HB χ PT near threshold $\gamma^{(*)}+p \rightarrow p+\pi^{0}$. Virtual photons in addition give the longitudinal response.
- Real photon results so in good agreement with HBХPT.
- Electroproduction data shows significant discrepancies.

Previous $\gamma^{(*)}+\mathrm{p} \rightarrow \mathrm{p}+\pi$ Tests of HB χ PT

Some previous work

 (not an exhaustive list)π^{0} Photoproduction
SAL
J.C. Bergstrom et al., PRC53, R1052 (1996)

Mainz
A. Schmidt et al., PRL 87,232501 (2001)

CB@MAMI (Mainz)
D.Hornidge et al. 2004-....
π^{0} Electroproduction
NIKHEF
H.B. van den Brink et al., PRL 74, 3561 (1995)

Mainz
$\mathrm{Q}^{2}=0.1$
M.O. Distler et al., PRL 80, 2294 (1998)
$\mathrm{Q}^{2}=0.05 \mathrm{GeV} / \mathrm{c} \mathrm{dW}=0-4 \mathrm{MeV}$
H. Merkel et al., PRL 88, 012301 (2002)
$\mathrm{Q}^{2}=0.05 \mathrm{GeV} / \mathrm{c} \mathrm{dW}=0-40 \mathrm{MeV}$
M. Weiss et al., EPJ A38, 27 (2008)

Photoproduction $H\left(\gamma, \pi^{0}\right) p$
SAL and Mainz differential cross section measurements in good agreement with HB χ PT.
Mainz $\Sigma(\theta) \rightarrow \mathrm{P}_{1}, \mathrm{P}_{2}$ (free of LEC)
Near-threshold measurements of polarisation observables continue at Mainz using the 4π Crystal Ball \& TAPS

Electroproduction $H\left(e, e^{\prime} p\right) \pi^{0}$

NIKHEF and $1^{\text {st }}$ Mainz measurements at $\mathrm{Q}^{2} \sim 0.1(\mathrm{GeV} / \mathrm{c})^{2} \mathrm{HB} \chi \mathrm{PT}$ fits made on these data.
Subsequent Mainz measurement @ $\mathrm{Q}^{2}=$ $0.05(\mathrm{GeV} / \mathrm{c})^{2}$ quite steep Q^{2} dependence. Mainz (2008) beam helicity asymmetry $\rightarrow \sigma_{\text {LT }}$ not in agreement with $\mathrm{HB} \chi \mathrm{PT}$

Jefferson Lab.
E04-007 $1^{\text {st }}$ proposed 2001, run in 2008

Published Results H(e,e'p) π^{0} A1-MAMI

M. Weiss et al., EPJ A38, 27 (2008)

MAID
D. Drechsel et al. NPA645, 145 (1999)

HB χ PT
V.Bernard et al.

DMT
S. Kamalov et al., PLB522, 27 (2001) Meson Exchange dynamical model
H. Merkel et al., PRL 88, 012301 (2002)

$\mathrm{HB} \chi \mathrm{PT}$ at odds with MAMI-A1 data. DMT description rather good.

Threshold H(e,e'p) π^{0} at Low Q², J.R.M. Annand, Chiral Dynamics, Bern 2009

Extracted and Predicted Multipole Strength @ Threshold

Source	$\left.\mathbf{Q}^{2} \mathbf{(G e V / c}\right)^{2}$	$\mathbf{E}_{\mathbf{0 +}}$	\mathbf{L}_{0+}	$\mathbf{P}_{\mathbf{2 3}}{ }^{2}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{P}_{\mathbf{4}}$	$\mathbf{P}_{\mathbf{5}}$
MAMI	0.00	-1.33		111.00	9.46 ± 0.28	$-9,5 \pm 0.28$	11.32 ± 0.34		
HBXPT	0.00	-1.14	-1.70	105.00	9.30			-0.60	-0.20
MAID	0.00	-1.23	-1.29	82.00	9.07	-10.68	7.07	-3.00	2.20
DR	0.00	-1.29		86.7	9.64	-10.29	8.22		
MAMI	0.05	0.57 ± 0.11	-1.29 ± 0.02	100 ± 3.0					
AmPS	0.05		-1.57 ± 0.96						
HBXPT	0.05	0.27	-1.55	353.00	16.50			-0.72	-0.20
MAID	0.05	0.76	-1.40	250.00	15.00			-1.75	1.90
MAMI	0.10	0.58 ± 0.18	-1.38 ± 0.01	573 ± 11	15.1 ± 0.8			-2.3 ± 0.2	0.1 ± 0.3
AmPS	0.10	1.99 ± 0.3	-1.33	526 ± 7	16.4 ± 0.6			-1.0 ± 0.4	-1.0 ± 0.4
HBXPT	0.10	1.42	-1.33	571.00	20.10			-0.60	-0.10
MAID	0.10	2.20	-1.12	315.00	17.10			-1.10	1.40
DR	0.10	1.55	-1.41						

$$
\begin{array}{ll}
P_{1}=3 E_{1+}+M_{1+}-M_{1} & P_{2}=3 E_{1+}-M_{1+}+M_{1 .} . \\
P_{3}=2 M_{1+}+M_{1 .} & P_{4}=4 L_{1+}+L_{1 .} \\
P_{5}=L_{1-}-2 L_{1+} & P_{23}^{2}=\left(P_{2}^{2}+P_{3}^{2}\right) / 2
\end{array}
$$

DR = Dispersion Relation Analysis
S. Kamalov et al, PRC 66, 065206 (2002)

E04-007 in Hall-A of Jefferson Lab.

Originally proposed 2001

Re-proposed 2004
Finally scheduled 2007-8, data taking April -- May 2008.

Physics Goal:

Extract high precision measurement of
$H\left(e, e^{\prime} p\right) \pi^{0}$ differential cross section near threshold

$$
\frac{d \sigma}{d \Omega_{e} d \Omega_{\pi}^{c m} d E^{\prime}}=\Gamma\{\underbrace{\frac{d \sigma_{T}}{d \Omega_{\pi}^{c m}}+\epsilon_{L} \frac{d \sigma_{L}}{d \Omega_{\pi}^{c m}}}_{2-4 \%}+\left[2 \epsilon_{L}(1+\epsilon)\right]^{1 / 2} \underbrace{\frac{d \sigma_{L T}}{d \Omega_{\pi}^{c m}}}_{3-6 \%} \cos \phi+\underbrace{\frac{d \sigma_{T T}}{d \Omega_{\pi}^{c m}}}_{10-20 \%} \cos 2 \phi\}
$$

Fine grid of Q^{2} and W :
$\mathrm{Q}^{2}=0.05 \rightarrow 0.15(\mathrm{GeV} / \mathrm{c})^{2}$, steps of $0.01(\mathrm{GeV} / \mathrm{c})^{2}$
$\Delta \mathrm{W}=0 \rightarrow 30 \mathrm{MeV}$, steps of $1-2 \mathrm{MeV}$
With complete kinematic coverage:
$\Delta \mathrm{W}=0-4 \mathrm{MeV}$ for $\mathrm{P}_{\text {proton }}>220 \mathrm{MeV} / \mathrm{c}$

Polarised Electron beam

extra term $\quad+h \sqrt{2 \epsilon(1-\epsilon)} \sigma_{L T^{\prime}}(\theta) \sin \phi$
in
$A_{L T^{\prime}}(\theta)=\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}=\frac{\sqrt{2 \epsilon(1-\epsilon)} \sigma_{L T^{\prime}}(\theta)}{\sigma_{T}(\theta)+\epsilon \sigma_{L}(\theta)-\epsilon \sigma_{T T}(\theta)} \rightarrow \sigma_{\mathrm{LT}} \rightarrow \operatorname{Im}\left(\mathrm{E}_{0^{+}}\right), \operatorname{Im}\left(\mathrm{L}_{0^{+}}\right)$

Near-Threshold $H\left(e, e^{\prime} p\right) \pi^{0}$ Some Experimental Considerations

- High beam energy not required... but if e' spectrometer can reach small angles can access low Q^{2} region and maximise virtual photon flux. $H\left(e, e^{\prime} p\right) \pi^{0}$ cross section small at threshold
- Reaction identified by e' and p, π^{0} not detected.
- Need sufficient energy resolution to obtain clean π^{0} missing mass distribution.
- Close to threshold recoil p focused tightly about the γ^{*} direction. A reasonable lab. angular acceptance can catch all p.
- Low Q^{2} implies low p momentum. Multiple scattering and energy loss in target and various components of the spectrometer detector stack must be accounted for carefully

Recoil p Kinematics near Threshold

Momentum Range p Spectrometer

Ellipses of constant $\Delta \mathrm{W}$ (W relative to π threshold)

$H\left(e, e^{\prime} p\right) \pi^{0} @$ Hall-A of Jefferson Lab

Threshold H(e,e'p) π^{0} at Low Q², J.R.M. Annand, Chiral Dynamics, Bern 2009

Floor Plan of Experiment

Threshold H(e,e'p) π^{0} at Low Q², J.R.M. Annand, Chiral Dynamics, Bern 2009

Target and Scattering Chamber

6 cm long $2.5 \mathrm{~cm} \varnothing \mathrm{LH}_{2}$ Cell with $200 \mu \mathrm{~m} \mathrm{Al}$ Wall specially made for E04-007

New vacuum chamber
Special flange with $76 \mu \mathrm{~m}$ Ti window for protons exiting to BigBite

The BigBite Spectrometer

Magnet: NIKHEF/Budker

Hadron Detector stack 2 of $x-u-v$ MWDC +
$\Delta \mathrm{E}-\mathrm{E}$ scintillator trigger planes
Can also be configured for $\mathrm{e}^{'}$ MWDC + ...
Threshold Cherenkov +
Shower-PreShower Pb-Glass
G_{En}, Transversity..... 12 GeV
(Internal target facility AmPS)
Simple non-focusing dipole $\sim 1 \mathrm{~T}$ Momentum resolution $\sim 5 \times 10^{-3}$

Summary of E04-007 Production Kinematics

Calibrations and Systematic Checks:

- Tantalum elastic, e' in HRS abs. beam energy
- Proton elastic - e' in HRS
p in BB: cross section, optics
- Carbon elastic and inelastic
beam energy and cross section
- HRS elastic p(e,e')
sieve-slit optics calibration
- BigBite Sieve Slit,

QE d(e,e'p) out-of-plane optics

- Elastic H(e,e'p) collimated target cell
- Elastic H(e,e'p) different dipole currents in BigBite
- Vary beam currents (1-6 6 a)
rate effects
- MWPC high voltage and threshold.

Efficiency for p.

- 1 KHz pulser:
computer dead time correction

Setting	Energy $(\mathbf{G e V})$	BB (deg.)	HRS (deg.)	$\mathbf{W}_{\text {min }}$ $(\mathbf{G e V})$	$\left\langle Q^{2}\right\rangle$ $\left(\mathbf{G e V / c}^{2}\right.$	Charge (C)
A	1.19	54.0	20.5	1.074	-0.15	0.36
B	1.19	54.0	16.5	1.074	-0.10	0.31
C	1.19	54.0	14.5	1.074	-0.08	0.42
D	1.19	54.0	12.5	1.074	-0.06	0.23
E	1.19	48.0	12.5	1.074	-0.06	0.38
F	1.19	48.0	14.5	1.074	-0.08	0.55
G	1.19	48.0	16.5	1.074	-0.10	0.68
H	1.19	48.0	20.5	1.074	-0.15	0.56
I	1.19	43.6	20.5	1.074	-0.15	0.31
J	1.19	43.6	16.5	1.074	-0.10	0.36
K	1.19	43.6	14.5	1.074	-0.08	0.45
L	1.19	43.6	12.5	1.074	-0.06	0.22
M	1.19	50.3	27.2	1.194	-0.21	0.02
N	2.32	54.0	13.2	1.074	-0.25	0.22
O	2.32	54.0	15.8	1.074	-0.35	0.31
Q	2.32	54.0	18.2	1.074	-0.45	0.34

BigBite optics already reasonably well known from prior $G_{E n}$ and Transversity measurements. Open spectrometer...detectors have direct view of target...rates in MWDC

Proton ID by $\delta \mathrm{E}-\mathrm{E}$ (also use TOF)

Top: low momentum p

$\delta E(3 \mathrm{~mm}$ thick)
\checkmark

E (30 mm thick)
Bottom: high momentum p
Threshold H(e,e'p) π^{0} at Low Q², J.R.M. Annand, Chiral Dynamics, Bern 2009

Proton Tracking in BigBite

Open spectrometer: direct view of target....high rates

BigBite Optics Calibration: Online Analysis

π^{0} Missing Mass for a range of Q^{2}

Expected Data Precision

HRS Optics: Sieve-Slit Collimator

Sieve: Run 4640 (New Database)

