

Overvíew

Inclusive Electron Scattering Dispersion Relations & Sum Rules Published ³He Data

Preliminary ³He Data

Inclusive Scattering

Kinematics

- Q^2 : 4-momentum transfer
- X : Bjorken Scaling var
- W : Invariant mass of target

Inclusive Scattering

- Q^2 : 4-momentum transfer
- X : Bjorken Scaling var
- W : Invariant mass of target

 $\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$

Inclusive Cross Section

deviation from point-like behavior characterized by the Structure Functions

Inclusive Scattering

When we add spin degrees of freedom to the target and beam, 2 Addiitonal SF needed.

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$$
$$+ \gamma g_1(x, Q^2) + \delta g_2(x, Q^2)$$

Inclusive <u>Polarized</u> Cross Section

Accessing the polarized SFs

$\frac{d^2 \sigma^{\uparrow\uparrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow\uparrow}}{d\Omega dE'} = \frac{4\alpha^2}{\nu Q^2} \frac{E'}{E} \left[\left(E + E' \cos \theta \right) g_1 - 2M x g_2 \right]$

Accessing the polarized SFs

 $\frac{d^2 \sigma^{\uparrow\uparrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow\uparrow}}{d\Omega dE'} = \frac{4\alpha^2}{\nu Q^2} \frac{E'}{E} \left[\left(E + E' \cos \theta \right) g_1 - 2M x g_2 \right]$

$$\frac{d^2\sigma^{\uparrow\Rightarrow}}{d\Omega dE'} - \frac{d^2\sigma^{\downarrow\Rightarrow}}{d\Omega dE'} = \frac{4\alpha^2}{\nu Q^2} \frac{E'}{E} \sin\theta \left[\frac{g_1}{2} + \frac{2ME}{\nu} \frac{g_2}{2} \right]$$

Compton Scattering Tensor differs from inclusive scattering Tensor only by the time ordering of the EM currents

Compton Scattering Tensor differs from inclusive scattering Tensor only by the time ordering of the EM currents

$$W^{\mu\nu} = i\epsilon^{\mu\nu\alpha\beta} [s_{\beta}G_{1}(\nu,Q^{2}) + (M\nu s_{\beta} - s \cdot qP_{\beta})G_{2}(\nu,Q^{2})]$$

$$T^{\mu\nu} = -i\epsilon^{\mu\nu\alpha\beta} q_{\alpha} [s_{\beta}S_{1}(\nu,Q^{2}) + (M\nu s_{\beta} - s \cdot qP_{\beta})S_{2}(\nu,Q^{2})]$$

$$g_1(x, Q^2) = M\nu G_1(\nu, Q^2) g_2(x, Q^2) = \nu^2 G_2(\nu, Q^2)$$

$$W_{\mu\nu}(\nu, Q^2) = \frac{1}{2\pi M} Im \ T_{\mu\nu}(\nu, Q^2)$$

$$S_1(\nu, Q^2) = 4 \int_0^\infty \frac{d\nu'\nu'}{\nu'^2 - \nu^2} G_1(\nu', Q^2)$$
$$S_2(\nu, Q^2) = 4 \int_0^\infty \frac{d\nu'\nu}{\nu'^2 - \nu^2} G_2(\nu', Q^2)$$

Ji and Osborne, J. Phys. G27, 127 (2001)

Unsubtracted Dispersion Relation + Optical Theorem:

$$S_{1}(\nu, Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu'}{\nu'^{2} - \nu^{2}} G_{1}(\nu', Q^{2})$$

Extended GDH Sum

$$\Gamma_1 = \int g_1 dx = \frac{Q^2}{8} S_1(0, Q^2)$$

 $Q^2 = 0 \rightarrow GDH$ Sum Rule

 $Q^2 = \infty \Rightarrow$ Bjorken Sum Rule

Ji and Osborne, J. Phys. G27, 127 (2001)

$$S_{1}(\nu,Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu'}{\nu'^{2} - \nu^{2}} G_{1}(\nu',Q^{2})$$

$$Extended GDH Sum$$

$$\Gamma_{1} = \int g_{1}dx = \frac{Q^{2}}{8}S_{1}(0,Q^{2})$$

$$Q^{2}=0 \Rightarrow GDH Sum Rule$$

$$\int_{\nu_{th}}^{\infty} \frac{\sigma_{k}(\nu) - \sigma_{P}(\nu)}{\nu} d\nu = -4\pi^{2}S\alpha \left(\frac{\kappa}{M}\right)^{2}$$

$$= -234 \ \mu b \ (Neutron; \ \kappa = -1.91)$$

$$= -496 \ \mu b \ (^{3}\text{He}; \qquad \kappa = -8.366)$$

Ji and Osborne, J. Phys. G27, 127 (2001)

$$S_{1}(\nu,Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu'}{\nu'^{2} - \nu^{2}} G_{1}(\nu',Q^{2})$$

$$\underbrace{\text{Extended GDH Sum}}_{\text{hreshold e-disintegration}}$$

$$\Gamma_{1} = \int g_{1} dx = \frac{Q^{2}}{8} S_{1}(0,Q^{2})$$

$$Q^{2} = 0 \Rightarrow \text{GDH Sum Rule}$$

$$\int_{\nu_{\text{th}}}^{\infty} \frac{\sigma_{\text{A}}(\nu) - \sigma_{\text{P}}(\nu)}{\nu} d\nu = -4\pi^{2} S\alpha \left(\frac{\kappa}{M}\right)^{2}$$

$$= -234 \, \mu b \text{ (Neutron; } \kappa = -1.91 \text{)}$$

$$= -496 \, \mu b \text{ }^{3}\text{He}; \quad \kappa = -8.366 \text{)}$$

Ji and Osborne, J. Phys. G27, 127 (2001)

$$S_1(\nu, Q^2) = 4 \int_0^\infty \frac{d\nu'\nu'}{\nu'^2 - \nu^2} G_1(\nu', Q^2)$$

Extended GDH Sum

$$\Gamma_1 = \int g_1 dx = \frac{Q^2}{8} S_1(0, Q^2)$$

Ji and Osborne, J. Phys. G27, 127 (2001)

$$S_1(\nu, Q^2) = 4 \int_0^\infty \frac{d\nu'\nu'}{\nu'^2 - \nu^2} G_1(\nu', Q^2)$$

$$\underbrace{\text{Extended GDH Sum}}$$

$$\Gamma_1 = \int g_1 dx = \frac{Q^2}{8} S_1(0, Q^2)$$

$$Q^{2} = 0 \Rightarrow GDH Sum Rule$$

$$Q^{2} = \infty \Rightarrow Bjorken Sum Rule$$

$$\Gamma_{1}^{(^{3}H)} - \Gamma_{1}^{(^{3}He)} = \frac{g_{A}^{tri}}{6} \cdot C_{NS}(\alpha_{s})$$

$$= 0.965 \pm 0.004$$

Ji and Osborne, J. Phys. G27, 127 (2001)

Unsubtracted Dispersion Relation + Optical Theorem:

$$S_{1}(\nu,Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu'}{\nu'^{2} - \nu^{2}} G_{1}(\nu',Q^{2})$$

$$S_{2}(\nu,Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu}{\nu'^{2} - \nu^{2}} G_{2}(\nu',Q^{2})$$

$$\downarrow$$

$$I_{1} = \int g_{1} dx = \frac{Q^{2}}{8} S_{1}(0,Q^{2})$$

$$G_{2}^{2} = 0 \Rightarrow \text{GDH Sum Rule}$$

$$S_{2}(\nu,Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu}{\nu'^{2} - \nu^{2}} G_{2}(\nu',Q^{2})$$

$$I_{2}(\nu,Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu}{\nu'^{2} - \nu'^{2}} G_{2}(\nu',Q^{2})$$

$$I_{2}(\nu',Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu}{\nu'^{2} - \nu'} G_{2}(\nu',Q^{2})$$

$$I_{2}(\nu,Q^{2}) = 4 \int_{0}^{\infty} \frac{d\nu'\nu}{\nu'} G_{2}(\nu,Q^{2}$$

 $Q^2 = \infty \Rightarrow Bjorken Sum Rule$

B&C, Annals Phys. 56, 453 (1970).

Generalized Forward Spin Polarizabilities

Drechsel, Pasquini and Vanderhaehen, Phys. Rep. 378, 99 (2003).

$$g_{TT}(\nu,Q^2) = \frac{\nu}{2\pi^2} \mathcal{P} \int_{\nu_0}^{\infty} \frac{d\nu' K}{\nu'^2 - \nu^2} \sigma_{TT}(\nu',Q^2) \qquad g_{LT}(\nu,Q^2) = \frac{1}{2\pi^2} \mathcal{P} \int_{\nu_0}^{\infty} \frac{d\nu' \nu' K}{\nu'^2 - \nu^2} \sigma_{LT}(\nu',Q^2)$$

LEX of g_{TT} and g_{LT} lead to the Generalized Forward Spin Polarizabilities

$$\gamma_{0}(Q^{2}) = \left(\frac{1}{2\pi^{2}}\right) \int_{\nu_{0}}^{\infty} \frac{K(\nu,Q^{2})}{\nu} \frac{\sigma_{TT}(\nu,Q^{2})}{\nu^{3}} d\nu$$

$$= \frac{16\alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2} \left[g_{1}(x,Q^{2}) - \frac{4M^{2}}{Q^{2}}x^{2}g_{2}(x,Q^{2})\right]$$

$$\delta_{LT}(Q^{2}) = \left(\frac{1}{2\pi^{2}}\right) \int_{\nu_{0}}^{\infty} \frac{K(\nu,Q^{2})}{\nu} \frac{\sigma_{LT}(\nu,Q^{2})}{Q\nu^{2}} d\nu$$

$$= \frac{16\alpha M^{2}}{Q^{6}} \int_{0}^{x_{0}} x^{2} \left[g_{1}(x,Q^{2}) + g_{2}(x,Q^{2})\right]$$

Thomas Jefferson National Accelerator Facility

CWLinear Accelerator

3 Exp. Halls

0.1 nA to 200 $\mu {\rm A}$

 $P_b \approx 85\%$

6 GeV Max Energy

CWLinear Accelerator

3 Exp. Halls

0.1 nA to 200 $\mu \rm A$

 $P_b \approx 85\%$

6 GeV Max Energy

HallA

High Resolution Spectrometers (HRS)

 10^{-4} Resolution Momentum : 0.3–4.3 GeV/c Max \mathcal{L} = 10^{38} cm⁻²s⁻¹ Anglular acceptance \approx 4msr

³He Polarízed Target

³He Target Polarizations

Courtesy of Chiranjib Dutta

³He Target Polarizations

Several Target Groups: JLab, UVa, W&M, Temple, Kentucky, UNH, Duke ...

³He Data From JLab

Resonance Region Experiments

E01012 Spokesmen: J.P. Chen, S. Choi, and N. Liyanage

E94010 Spokesmen: J.P. Chen, G. Cates, and Z.E. Meziani

E97110 Spokesmen: J.P. Chen, A. Deur, and F. Garibaldi

Relevent Publications

KS, PRL 101, 022303 (2008)

P. Solvignon et al PRL 101, 182502 (2008)

Thanks to Patricia Solvignon and Vince Sulkosky for providing plots

Compared to DIS expectations

³He Moments

$$\Gamma_1(Q^2) = \int g_1(x, Q^2) dx$$

³He Moments

³He Moments

σ_{TT} (GDH Integrand)

• •

 $\bullet \sigma_{TT}$

σ_{TT} (GDH Integrand)

³He Quasí-elastic

³He Quasi-elastic

 $1.2 < Q^2 < 3 \text{ GeV}^2$

P. Solvignon et al PRL 101:182502,(2008)

figs courtesy of P. Solvignon

 $1.2 < Q^2 < 3 \text{ GeV}^2$

E97110 Preliminary

 $0.04 < Q^2 < 0.24$

figs courtesy of V. Sulkosky

BC Sum Rule

$$\int_{0}^{1} g_2(x, Q^2) dx = 0$$

BC = RES+DIS+ELASTIC

"RES": Here refers to measured x-range

"DIS": refers to unmeasured low x part of the integral. Not strictly Deep Inelastic Scattering due to low Q²

Assume Leading Twist Behaviour

Elastic: From well know FFs (<5%)

BC Sum Rule

BC satisfied w/in errors for JLab Proton 2.8 σ violation seen in SLAC data

BC satisfied w/in errors for Neutron (But just barely in vicinity of Q²=1!)

BC satisfied w/in errors for ³He

BC Sum Rule

Spin Polarizabilities

Forward Spin Polarizabilities

Forward Spin Polarizabilities

³He higher moments

$$\int_{x_0}^0 dx \ x^2 \ g_1^{^3He}(x,Q^2)$$

$$\int_{x_0}^0 dx \ x^2 \ g_2^{^3He}(x, Q^2)$$

Free from Nuclear Corrections

Would love to get theory curves on these plots.

Summary

Dispersion Relations & Sum Rules

JLab Hall A ³He Resonance data E94-010, E01-012, E97-110

Existing ³He GDH Data trending positive at Q²=0.1 GeV²

trending positive at $Q^2=0.1$ GeV² while we expect -496 at $Q^2=0$. E97110 may resolve

Nuclear BC sum rule data

Satisfaction for ³He despite large elastic and QE contributions

Preliminary ³He polarizabilities

Free from nuclear corrections theory calculations/input needed

Backups

g2 Structure Function

Leading twist determined entirely by g₁

Good quantity to study higher twist

σ_{TT} and σ_{LT}

σ_{TT} and σ_{LT}

