Pion Polarizability: no Conflict between Dispersion Theory and ChPT

Barbara Pasquini¹, Dieter Drechsel², and Stefan Scherer²

¹Università Pavia and INFN

²Institut für Kernphysik , Universität Mainz

FK: L.V. Fil'kov, V.L. Kashevarov, Phys. Rev. C 72, 035211 (2005)

GIS: J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 745, 84 (2006)

Introduction

- ► Prediction of ChPT at $\mathcal{O}(\rho^6)$ [GIS]: $\alpha_{\pi^+} + \beta_{\pi^+} = 0.16 \pm 0.1, \quad \alpha_{\pi^+} - \beta_{\pi^+} = 5.7 \pm 1.0$
- ► Prediction of Ref. [FK]: $\alpha_{\pi^+} + \beta_{\pi^+} = 0.17 \pm 0.02$, $\alpha_{\pi^+} - \beta_{\pi^+} = 13.60 \pm 2.15$

experimental data: next talk by J. Friedrich!

Physical regions in Mandelstam plane

- variables s, u, t with $s + u + t = 2m^2$
- ► rectangular coordinates ν = (s − u)/4m (energy) t (momentum transfer)
- ▶ red hatched: physical regions $(\gamma + \pi \rightarrow \gamma + \pi, \gamma + \gamma \rightarrow \pi + \pi)$
- two-pion thresholds at s = 4m², u = 4m², t = 4m²
- integration paths for DRs:
 t = 0 (forward DR),
 - $\theta = 180^{\circ}$ (backward DR),

$$u = m^2$$
, $s = m^2$, etc.

polarizability determined at $s = u = m^2_{\Box}$ or $\nu_{\Box} = t = 0_{\Box}$

Taylor series in circle about $\nu = t = 0$

- There should be no singularities in red hatched triangle.
- Within a circle about origin of Mandelstam plane and fitting into triangle, amplitude given by Taylor series.
- Model of L.V. Fil'kov and V.L. Kashevarov has singularities 1/√s, 1/√t, 1/√u (Xing symmetry).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

FK model for vector meson contributions

$$M^{+-}(s) = rac{4 \, g(s)^2}{M^2 - s - i M \Gamma(s)}, \quad M^{++}(s) = -s \, M^{+-}(s) \qquad (1)$$

with energy-dependent width (P wave $\sim q^3$ at threshold)

$$\Gamma(s) = \left(\frac{s - 4 m^2}{M^2 - 4 m^2}\right)^{3/2} \Gamma_0$$
 (2)

with Γ_0 width of vector meson V at resonance, $s = M^2$, and energy-dependent coupling constant ($\sim s^{-1/2}$ singularity at s = 0)

$$g(s)^{2} = \frac{6\pi M}{s^{1/2}} \left(\frac{M}{M^{2} - m^{2}}\right)^{3} \Gamma_{\gamma}, \qquad (3)$$

with partial decay width Γ_{γ} for $V \rightarrow \pi + \gamma$.

Polarizabilities for FK model

$$\alpha + \beta = \frac{m}{2\pi} M^{+-} (s = m^2), \quad \alpha - \beta = \frac{1}{2\pi m} M^{++} (s = m^2) \quad (4)$$

From Eq. (1) $\rightarrow M^{++} (s = m^2) = -m^2 M^{+-} (s = m^2) \Rightarrow$

$$\alpha + \beta = -(\alpha - \beta) \quad \Rightarrow \quad \alpha = 0 \tag{5}$$

Transition pion $(J^P = 0^-)$ to intermediate vector meson $(J^P = 1^-)$ is magnetic dipole transition, should yield paramagnetic contribution to β .

Table: Polarizabilities according to Ref. FK, in units of $10^{-4}\,\mathrm{fm}^3$

meson	$\alpha + \beta$	$\alpha - \beta$	α	β
ρ	0.063	-1.15	-0.54	0.61
ω	0.721	-12.56	-5.92	6.64

Singularities of FK model

- Model has unphysical singularities at s = 0, t = 0, u = 0, very close to s = u = m² or v = t = 0. These singularities are prerequisite to fulfill Titchmarsh theorem (square integrability → Hilbert transforms).
- FK evaluate dispersion integral over physical cut only. Imaginary parts "below physical threshold" set zero. Result: Non-analytic function, Titchmarsh theorem annulled.

Contour for forward DR

- Step 1: Contour integral along small circle with radius ε about ν = 0: F(0) = 1/(2πi) ∮ F(ν')/ν' (Cauchy integral)
- Step 2: Extend contour until it hits non-analytic structures or infinity.
- Results \Rightarrow
- ▶ No contribution from "big circle" $R \to \infty$.
- ▶ Physical cuts $-\infty < \operatorname{Re}(\nu) \le -\nu_{\operatorname{thr}}$ and $\nu_{\operatorname{thr}} \le \operatorname{Re}(\nu) < \infty$.
- Unphysical cuts starting at s = 0 and u = 0 yield large contributions. FK ignore respective imaginary parts, as a result the amplitude becomes non-analytic in parts of the complex plane.

Contour plots for FK model

• Physical cut with maximum near $x = M^2 \approx 0.55 \text{GeV}^2$.

• Unphysical (left-hand) cut with "bound state" near -11 GeV^2 .

• $\alpha \pm \beta$ determined at $\{x = m^2, y = 0\}$, "squeezed in between cuts".

Integrands for $\alpha \pm \beta$ as function of $x = \operatorname{Re}(s)$ in units GeV^2

▲口▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Contributions to electric (α) and magnetic (β) polarizabilities for ρ meson with several resonance models

A = pole at $M - i\Gamma_0/2$, B = pole at $M - i\Gamma(s)/2$, C = $\Gamma(s)^2 \rightarrow 0$ {A0, B0, C0} with $g(M^2)$ and {A, B, C} with g(s)

 $\alpha + \beta$

	real	r.c.	l.c.	rest		real	r.c.	l.c.	rest
A0	0.04	0.04	0.00	—	A0	-0.04	-1.04	-0.08	1.08
<i>B</i> 0	0.04	0.03	_	0.01	<i>B</i> 0	-0.04	-1.15	—	1.11
<i>C</i> 0	0.04	0.03	_	0.00	<i>C</i> 0	-0.04	-1.93	—	1.89
A	0.20	0.05	0.15	_	A	-0.20	-1.06	0.86	_
В	0.20	0.03	0.17	0.00	В	-0.20	-1.02	0.81	0.01
С	0.20	0.03	0.17	_	С	-0.20	-1.18	0.98	_

 $\alpha - \beta$

Numbers in units of 10^{-4} fm³. First column: Model, second column: directly from real part of amplitudes, further columns: contributions from Cauchy integral (r.c. and l.c. = integrals along right and left cuts, rest= residues of poles and "big circle"). Note: Sum of dispersive contributions \equiv real part.

► Titchmarsh theorem: IF f(v) = f(x + iy) analytic in complex plane, except for isolated singular points on real axis, and ∫[∞]_{-∞} |f(x + iy)|² finite for any |y| > 0, THEN Re(f) and Im(f) are Hilbert transforms (related by dispersion relations).
 ► FK model fulfills integrability only because of energy

dependent width and coupling constant.

- ► Titchmarsh theorem: IF f(ν) = f(x + iy) analytic in complex plane, except for isolated singular points on real axis, and ∫[∞]_{-∞} |f(x + iy)|² finite for any |y| > 0, THEN Re(f) and Im(f) are Hilbert transforms (related by dispersion relations).
- FK model fulfills integrability only because of energy dependent width and coupling constant.
- Analyticity: lim_{ν'→ν} f(ν) f(ν) / ν'-ν → f'(ν) derivative independent of path ν' → ν, except for isolated singular points. Setting Im(f(ν)) ⇒ 0 within region G makes G a non-analytic region.

- ► Titchmarsh theorem: IF f(v) = f(x + iy) analytic in complex plane, except for isolated singular points on real axis, and ∫[∞]_{-∞} |f(x + iy)|² finite for any |y| > 0, THEN Re(f) and Im(f) are Hilbert transforms (related by dispersion relations).
- FK model fulfills integrability only because of energy dependent width and coupling constant.
- Analyticity: lim_{ν'→ν} f(ν) f(ν) / ν'-ν → f'(ν) derivative independent of path ν' → ν, except for isolated singular points. Setting Im(f(ν)) ⇒ 0 within region G makes G a non-analytic region.
- It is inconsistent to introduce energy-dependent width for convergence at large energies (Titchmarsh!) and later ignore consequences (unphysical cut) at small energies (annul Titchmarsh, create non-analytic region!).

- ► Titchmarsh theorem: IF f(v) = f(x + iy) analytic in complex plane, except for isolated singular points on real axis, and ∫[∞]_{-∞} |f(x + iy)|² finite for any |y| > 0, THEN Re(f) and Im(f) are Hilbert transforms (related by dispersion relations).
- FK model fulfills integrability only because of energy dependent width and coupling constant.
- Analyticity: lim_{ν'→ν} f(ν) −f(ν)/ν'-ν → f'(ν) derivative independent of path ν' → ν, except for isolated singular points. Setting Im(f(ν)) ⇒ 0 within region G makes G a non-analytic region.
- It is inconsistent to introduce energy-dependent width for convergence at large energies (Titchmarsh!) and later ignore consequences (unphysical cut) at small energies (annul Titchmarsh, create non-analytic region!).
- ▶ Inconsistency introduces strong and negative electric polarizability from magnetic dipole transition $(\pi \rightarrow \rho, \omega, ...)$.
- σ meson exchange in t-channel: $\alpha \beta \rightarrow \infty$ because of $1/\sqrt{t}$.