Pion Polarizability: no Conflict between Dispersion Theory and ChPT

Barbara Pasquini ${ }^{1}$, Dieter Drechsel ${ }^{2}$, and Stefan Scherer ${ }^{2}$
${ }^{1}$ Università Pavia and INFN
${ }^{2}$ Institut für Kernphysik , Universität Mainz

PDS: B. Pasquini, D.Drechsel, S.Scherer, Phys. Rev. C 77, 065211 (2008)FK: L.V. Fil'kov, V.L. Kashevarov, Phys. Rev. C 72, 035211 (2005)
GIS: J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 745, 84 (2006)

Introduction

- $\alpha=$ electric polarizability, $\beta=$ magnetic polarizability units: $10^{-4} \mathrm{fm}^{3}$
forward polarizability of pion, $\alpha+\beta$
backward polarizability of pion, $\alpha-\beta$
- Prediction of ChPT at $\mathcal{O}\left(p^{6}\right)$ [GIS]:

$$
\alpha_{\pi^{+}}+\beta_{\pi^{+}}=0.16 \pm 0.1, \quad \alpha_{\pi^{+}}-\beta_{\pi^{+}}=5.7 \pm 1.0
$$

- Prediction of Ref. [FK]:

$$
\alpha_{\pi^{+}}+\beta_{\pi^{+}}=0.17 \pm 0.02, \quad \alpha_{\pi^{+}}-\beta_{\pi^{+}}=13.60 \pm 2.15
$$

- experimental data: next talk by J. Friedrich!

Physical regions in Mandelstam plane

- variables s, u, t with $s+u+t=2 m^{2}$
- rectangular coordinates $\nu=(s-u) / 4 m$ (energy) t (momentum transfer)
- red hatched: physical regions $(\gamma+\pi \rightarrow \gamma+\pi$, $\gamma+\gamma \rightarrow \pi+\pi)$
- two-pion thresholds at

$$
s=4 m^{2}, u=4 m^{2}, t=4 m^{2}
$$

- integration paths for DRs:
$t=0$ (forward DR), $\theta=180^{\circ}$ (backward DR), $u=m^{2}, s=m^{2}$, etc.
polarizability determined at $s=u=m^{2}$ or $\nu_{0}=t=0$

Taylor series in circle about $\nu=t=0$

- There should be no singularities in red hatched triangle.
- Within a circle about origin of Mandelstam plane and fitting into triangle, amplitude given by Taylor series.
- Model of L.V. Fil'kov and V.L. Kashevarov has singularities $1 / \sqrt{s}, 1 / \sqrt{t}$, $1 / \sqrt{u}$ (Xing symmetry).

FK model for vector meson contributions

$$
\begin{equation*}
M^{+-}(s)=\frac{4 g(s)^{2}}{M^{2}-s-i M \Gamma(s)}, \quad M^{++}(s)=-s M^{+-}(s) \tag{1}
\end{equation*}
$$

with energy-dependent width (P wave $\sim q^{3}$ at threshold)

$$
\begin{equation*}
\Gamma(s)=\left(\frac{s-4 m^{2}}{M^{2}-4 m^{2}}\right)^{3 / 2} \Gamma_{0} \tag{2}
\end{equation*}
$$

with Γ_{0} width of vector meson V at resonance, $s=M^{2}$, and energy-dependent coupling constant ($\sim s^{-1 / 2}$ singularity at $s=0$)

$$
\begin{equation*}
g(s)^{2}=\frac{6 \pi M}{s^{1 / 2}}\left(\frac{M}{M^{2}-m^{2}}\right)^{3} \Gamma_{\gamma} \tag{3}
\end{equation*}
$$

with partial decay width Γ_{γ} for $V \rightarrow \pi+\gamma$.

Polarizabilities for FK model

$$
\begin{equation*}
\alpha+\beta=\frac{m}{2 \pi} M^{+-}\left(s=m^{2}\right), \quad \alpha-\beta=\frac{1}{2 \pi m} M^{++}\left(s=m^{2}\right) \tag{4}
\end{equation*}
$$

From Eq. (1) $\rightarrow M^{++}\left(s=m^{2}\right)=-m^{2} M^{+-}\left(s=m^{2}\right) \Rightarrow$

$$
\begin{equation*}
\alpha+\beta=-(\alpha-\beta) \quad \Rightarrow \quad \alpha=0 \tag{5}
\end{equation*}
$$

Transition pion $\left(J^{P}=0^{-}\right)$to intermediate vector meson $\left(J^{P}=1^{-}\right)$is magnetic dipole transition, should yield paramagnetic contribution to β.

Table: Polarizabilities according to Ref. FK, in units of $10^{-4} \mathrm{fm}^{3}$

meson	$\alpha+\beta$	$\alpha-\beta$	α	β
ρ	0.063	-1.15	-0.54	0.61
ω	0.721	-12.56	-5.92	6.64

Singularities of FK model

- Model has unphysical singularities at $s=0, t=0, u=0$, very close to $s=u=m^{2}$ or $\nu=t=0$.
These singularities are prerequisite to fulfill Titchmarsh theorem (square integrability \rightarrow Hilbert transforms).
- FK evaluate dispersion integral over physical cut only. Imaginary parts "below physical threshold" set zero. Result: Non-analytic function, Titchmarsh theorem annulled.

- Step 1: Contour integral along small circle with radius ε about $\nu=0$: $F(0)=1 /(2 \pi i) \oint F\left(\nu^{\prime}\right) / \nu^{\prime}$ (Cauchy integral)
- Step 2: Extend contour until it hits non-analytic structures or infinity.
- Results \Rightarrow
- No contribution from "big circle" $R \rightarrow \infty$.
- Physical cuts $-\infty<\operatorname{Re}(\nu) \leq-\nu_{\text {thr }}$ and $\nu_{\text {thr }} \leq \operatorname{Re}(\nu)<\infty$.
- Unphysical cuts starting at $s=0$ and $u=0$ yield large contributions. FK ignore respective imaginary parts, as a result the amplitude becomes non-analytic in parts of the complex plane.

Contour plots for FK model

$\operatorname{Im}\left[M^{+-}(s=x+i y)\right](\Rightarrow \alpha+\beta)$

$$
\operatorname{Im}\left[M^{++}(s=x+i y)\right](\Rightarrow \alpha-\beta)
$$

- Physical cut with maximum near $x=M^{2} \approx 0.55 \mathrm{GeV}^{2}$.
- Unphysical (left-hand) cut with "bound state" near $-11 \mathrm{GeV}^{2}$.
- $\alpha \pm \beta$ determined at $\left\{x=m^{2}, y=0\right\}$, "squeezed in between cuts".

Integrands for $\alpha \pm \beta$
as function of $x=\operatorname{Re}(s)$ in units GeV^{2}

$\alpha+\beta=0.17$ (l.c.) +0.03 (r.c.)

Integrand for $\alpha-\beta$

$\alpha-\beta=0.98$ (l.c.) -1.18 (r.c.)

Contributions to electric (α) and magnetic (β) polarizabilities for ρ meson with several resonance models
$\mathrm{A}=$ pole at $M-i \Gamma_{0} / 2, \mathrm{~B}=$ pole at $M-i \Gamma(s) / 2, \mathrm{C}=\Gamma(s)^{2} \rightarrow 0$
$\{A 0, B 0, C 0\}$ with $g\left(M^{2}\right)$ and $\{A, B, C\}$ with $g(s)$

$$
\alpha+\beta
$$

	real	r.c.	I.c.	rest
$A 0$	0.04	0.04	0.00	-
$B 0$	0.04	0.03	-	0.01
$C 0$	0.04	0.03	-	0.00
A	0.20	0.05	0.15	-
B	0.20	0.03	0.17	0.00
C	0.20	0.03	0.17	-

Numbers in units of $10^{-4} \mathrm{fm}^{3}$. First column: Model, second column: directly from real part of amplitudes, further columns: contributions from Cauchy integral (r.c. and I.c. $=$ integrals along right and left cuts, rest $=$ residues of poles and "big circle"). Note: Sum of dispersive contributions \equiv real part.

Conclusions

- Titchmarsh theorem: IF $f(\nu)=f(x+i y)$ analytic in complex plane, except for isolated singular points on real axis, and $\int_{-\infty}^{\infty}|f(x+i y)|^{2}$ finite for any $|y|>0$, THEN $\operatorname{Re}(f)$ and $\operatorname{Im}(\mathrm{f})$ are Hilbert transforms (related by dispersion relations).
- FK model fulfills integrability only because of energy dependent width and coupling constant.

Conclusions

- Titchmarsh theorem: IF $f(\nu)=f(x+i y)$ analytic in complex plane, except for isolated singular points on real axis, and $\int_{-\infty}^{\infty}|f(x+i y)|^{2}$ finite for any $|y|>0$, THEN $\operatorname{Re}(f)$ and $\operatorname{Im}(\mathrm{f})$ are Hilbert transforms (related by dispersion relations).
- FK model fulfills integrability only because of energy dependent width and coupling constant.
- Analyticity: $\lim _{\nu^{\prime} \rightarrow \nu} \frac{f\left(\nu^{\prime}\right)-f(\nu)}{\nu^{\prime}-\nu} \rightarrow f^{\prime}(\nu)$ derivative independent of path $\nu^{\prime} \rightarrow \nu$, except for isolated singular points. Setting $\operatorname{Im}(f(\nu)) \Rightarrow 0$ within region G makes G a non-analytic region.

Conclusions

- Titchmarsh theorem: IF $f(\nu)=f(x+i y)$ analytic in complex plane, except for isolated singular points on real axis, and $\int_{-\infty}^{\infty}|f(x+i y)|^{2}$ finite for any $|y|>0$, THEN $\operatorname{Re}(f)$ and $\operatorname{Im}(\mathrm{f})$ are Hilbert transforms (related by dispersion relations).
- FK model fulfills integrability only because of energy dependent width and coupling constant.
- Analyticity: $\lim _{\nu^{\prime} \rightarrow \nu} \frac{f\left(\nu^{\prime}\right)-f(\nu)}{\nu^{\prime}-\nu} \rightarrow f^{\prime}(\nu)$ derivative independent of path $\nu^{\prime} \rightarrow \nu$, except for isolated singular points. Setting $\operatorname{Im}(f(\nu)) \Rightarrow 0$ within region G makes G a non-analytic region.
- It is inconsistent to introduce energy-dependent width for convergence at large energies (Titchmarsh!) and later ignore consequences (unphysical cut) at small energies (annul Titchmarsh, create non-analytic region!).

Conclusions

- Titchmarsh theorem: IF $f(\nu)=f(x+i y)$ analytic in complex plane, except for isolated singular points on real axis, and $\int_{-\infty}^{\infty}|f(x+i y)|^{2}$ finite for any $|y|>0$, THEN $\operatorname{Re}(f)$ and $\operatorname{Im}(\mathrm{f})$ are Hilbert transforms (related by dispersion relations).
- FK model fulfills integrability only because of energy dependent width and coupling constant.
- Analyticity: $\lim _{\nu^{\prime} \rightarrow \nu} \frac{f\left(\nu^{\prime}\right)-f(\nu)}{\nu^{\prime}-\nu} \rightarrow f^{\prime}(\nu)$ derivative independent of path $\nu^{\prime} \rightarrow \nu$, except for isolated singular points. Setting $\operatorname{Im}(f(\nu)) \Rightarrow 0$ within region G makes G a non-analytic region.
- It is inconsistent to introduce energy-dependent width for convergence at large energies (Titchmarsh!) and later ignore consequences (unphysical cut) at small energies (annul Titchmarsh, create non-analytic region!).
- Inconsistency introduces strong and negative electric polarizability from magnetic dipole transition $(\pi \rightarrow \rho, \omega, \ldots)$.
- σ meson exchange in t-channel: $\alpha-\beta \rightarrow \infty$ because of $1 / \sqrt{t}$.

