

Evidence for πK atoms with DIRAC

Angela Benelli Zurich University

Sixth International Workshop oh Chiral Dynamics University of Bern 6–10 July 2009

DIRAC collaboration

πK atom & πK scattering

What do we learn from measuring πK atom's lifetime?

A measurement of the πK atom lifetime will shed new light on relevant S-wave πK scattering lengths. A test of chiral perturbation predictions involving – besides the u and d quark – also the s quark (3-flavour case) is of substantial interest: it provides a way to investigate a potential flavour dependence of the quark condensate responsible for chiral symmetry breaking.

Scattering lengths calculations

Results on
$$M_{\pi}a_1$$
, $M_{\pi}a_3$ & $M_{\pi}(a_1 - a_3)$:

Authors:

Weinberg; Kubis, Meissner; Bijnens, Dhonte, Talavera; Buettiker, Descotes-Genon, Moussallam

	$M_{\pi}(a_{1}-a_{3})=A_{13}$	Ref.
CA	0.214	PRL 17 (66) 616
O(p ⁴)	0.238 ± 0.002	PL B529 (02) 69
O(p ⁶)	0.267	JHEP 0405 (04) 036
RS	0.269 ± 0.015	EP J C33 (04) 409
Exp	0.475 ± 0.013	NP B133 (78) 490

- CA -> Current Algebra
- RS -> Roy-Steiner dispersion relations
- Exp -> Kp scattering (OPE)

πK -atom lifetime

$$\Gamma_{\pi^{0}K^{0}} = \frac{8}{9}\alpha^{3}p^{*}\mu^{2}|a_{1} - a_{3}|^{2}(1+\delta)$$

$$(\tau^{-1} = \Gamma_{1S} \approx \Gamma_{\pi^0 K^0}) \quad \mathbf{a}_1 - \mathbf{a}_3 = \Delta$$

 $\frac{\delta\tau}{\tau} = 20\% \quad \Rightarrow \quad \frac{\delta\Delta}{\Delta} = 10\%$

 $a_1 = a_{1/2}$ $a_3 = a_{3/2}$ S-wave scattering lengths for isospin (π K)=1/2, 3/2

 $\begin{cases} \text{Isospin breaking}: \\ \delta = (4.0 \pm 2.2) \ 10^{-2} \end{cases}$

P* = 11.8 MeV/c

$$\mu$$
 = reduced mass = 109 MeV

From Roy-Steiner dispersion relations:

 $a_1 - a_2$

$$a_3 = 0.269 \pm 0.015 \implies \tau = (3.7 \pm 0.4) 10^{-15} s$$

Upgraded DIRAC experimental setup

Type of $K\pi$ events

K and π are bound in an atom

Signal and background Ql distribution

Events that fake $K\pi$ events

1) Proton- π events

2) $\pi\pi$ events

Coulomb Correlation OBSERVATION

Prompt pairs / Accidentals = <u>Correlation function</u> R as a function of |QI| for K+ π - pairs.

The deviation from the horizontal line proves the existance of Coulomb correlated K π pairs --> production of Atoms

Background fit and signal extraction

π^+K^- and π^-K^+ signal

TIK SIGNAL

In total 173±54 π K-atoms are observed with a significance of 3.2 sigma.

The probability that the excess in the 3 first bins is due to statistical fluctuations is 1‰.

Breakup probability and lifetime

Conclusion

We have presented the first evidence for the production of $K\pi$ atoms

 $K\pi$ atoms = 173 ± 54

A lower limit on the mean lifetime is established with CL 90%

$\tau > 0.8$ fs

The ultimate goal of the DIRAC experiment is to measure the lifetime of $K\pi$ atoms with a precision of 20%