Nucleon Spin Polarisabilities from Deuteron Compton Scattering

H. W. Grießhammer

for Deepshikha Shukla (no thanks to US DHS)

Center for Nuclear Studies The George Washington University, DC, USA

- Previous Successes
- 2 Spin-Polarisabilities in the Deuteron
- 3 Per Aspera Ad Astra
- 4 Concluding Questions

How do constituents of the nucleon react to external fields? How to reliably extract neutron and spin polarisabilities?

Comprehensive Theory Effort:

hg, J. McGovern (Manchester), D. R. Phillips (Ohio U), D. Choudhury Shukla (GW)

Precursors: R. Hildebrandt/T. R. Hemmert/B. Pasquini/hg. . . 2000-05, . . . , Beane/Malheiro/McGovern/Phillips/van Kolck 1999-2005; Choudhury Shukla/Phillips 2005-08

1. Previous Successes

(a) Deuteron Compton Scattering at $\omega = 0...200$ MeV

hg/Hemmert/Hildebrandt/Phillips 2004 hg/RPH/TRH 2005

– Iso-scalar $lpha_{E1}^s,\,eta_{M1}^s$ at $\mathcal{O}(m{arepsilon}^3)$

Full dispersion, chirally consistent, strong Δ para-magnetism.

 Δ in Small Scale Expansion

Hemmert/Hostein/Kambor 1998

Short-distance coefficients $\delta \bar{\alpha}$, $\delta \bar{\beta}$ fit to experiment.

 \implies Determine static polarisabilities $\bar{\alpha}^s$, $\bar{\beta}^s$.

- One-body contributions

- meson-exchange currents

(b) Un-Polarised Deuteron Compton Scattering

hg/Hemmert/Hildebrandt/Phillips 2004 hg/RPH/TRH 2005

2. Spin-Polarisabilities in the Deuteron

(a) Dynamical Polarisabilities from "Interactions": Nucleonic Faraday Effect

Response of spin-degrees of freedom in nucleon to real photon of definite multipolarity and non-zero energy ω . \implies Multipole Analysis.

quadrupole etc.

$$E_{ij} := \frac{1}{2}(\partial_i E_j + \partial_j E_i)$$
 etc.

(b) Iso-Scalar Spin-Dependent Dynamical Polarisabilities Hildebrandt/TRH/hg/Pasquini 2002/03

Predicted in χ EFT: No *N*-core contributions \implies no free parameters.

Polarisabilities, ChiDyn Bern, 15', 7.7.2009

5-1

Ishammer, CNS@GWU

3. Per Aspera Ad Astra

(a) Deuteron Polarisation Observables and Notebook

Shukla/hg/McGovern/Phillips 2009

circpol. γ , vecpol. deuteron:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\Big|_{\mathrm{u}}^{\mathrm{lin}} \xrightarrow{\vec{k}} \underbrace{\vec{k}}_{\bigotimes} \underbrace{\vec{k}}_{\theta}$

linpol. γ , vecpol. deuteron:

 $\Delta_{z}^{\lim} \xrightarrow{x_{1}}_{y_{0}} \overline{z} \xrightarrow{\overline{k}}_{z} \overline{\overline{c}} \xrightarrow{\overline{k}}_{\theta} \overline{\overline{c}} \xrightarrow{\overline{k}}_{\theta}$

Differences Δ and asymmetries $\Sigma = \frac{\Delta}{sum}$

2×6 observables, 6 polarisabilities, 3 kinemat. variables ω, θ, ϕ + additional Constraints:

– scalar polarisabilities α_{E1} , β_{M1}

 $-\gamma_0, \gamma_{\pi}$ (???)

- experiment: detector settings,...

 \implies Kill too many trees when all presented.

3. Per Aspera Ad Astra

(a) Deuteron Polarisation Observables and Notebook

(b) Spin-Polarisabilities from Circularly Pol. Photons at 125 MeV

Shukla/Phillips 2005 Shukla/hg 2009

Deuteron Best: Incoming γ circularly polarised, sum over final states. *N*-spin in (\vec{k}, \vec{k}') -plane, perpendicular to \vec{k} :

– More pronounced by explicit $\Delta(1232)$

- No residual deuteron wave-function dependence
 V Higher pols negligible
- Thomson (*NN* rescatt.) important even at high $\omega = 125 \text{ MeV}$

(b) Spin-Polarisabilities from Circularly Pol. Photons at 125 MeV

Shukla/Phillips 2005 Shukla/hg 2009

Deuteron Best: Incoming γ circularly polarised, sum over final states. *N*-spin in (\vec{k}, \vec{k}') -plane, perpendicular to \vec{k} :

Shukla/Phillips 2005 (b) Spin-Polarisabilities from Circularly Pol. Photons at 125 MeV

Shukla/hg 2009

Deuteron Best: Incoming γ circularly polarised, sum over final states. N-spin in (\vec{k}, \vec{k}') -plane, perpendicular to \vec{k} :

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(c) Switching Off Polarisability Contributions

Maximon 1994 (proton) hg/Hildebrandt 2003-5, Shukla/hg 2009

$$\mathcal{L}_{\mathsf{pol}} = 4\pi \, N^{\dagger} \left\{ \frac{1}{2} \left[\boldsymbol{\alpha}_{E1}(\boldsymbol{\omega}) \, \vec{E}^2 + \boldsymbol{\beta}_{M1}(\boldsymbol{\omega}) \, \vec{B}^2 \right] + \dots \right\} N$$

Example: linearly polarised photon, $\omega = 45 \text{ MeV}, \ \theta = 90^{\circ}$

Unaffected by orbital ang. momentum in deuteron; Weller HI γ S approved for $\omega = 65 \text{ MeV}$ circpol.

Only in cross-sections of special configurations; not for asymmetries!

4. Concluding Questions

(a) Comprehensive Approach to Compton Scattering

H. W. Grießhammer (GW), J. McGovern (U. of Manchester), D. R. Phillips (Ohio U.), D. Choudhury Shukla (GW-UNC)

Comprehensive Compton Scattering picture off p, d, ³He in χ EFT. Goals: Guide and support experiments: planning and data-taking. ongoing: MAXIab; approved/planning: HI γ S , MAMI, S-DALINAC,...

- multipole-analysis \implies map out energy-dependence of response, spin-polarisabilities.
- proton-neutron difference.
- short-distance origin of C.T.s $\delta \bar{\alpha}$, $\delta \bar{\beta}$.

Done: Coding, streamlining,...; **Upcoming:** χ EFT with $\Delta(1232)$ at δ^4 Pascalutsa/Phillips 2003 \rightarrow J. McGovern

- Kinematics: correct π -threshold, Δ -resonance position.
- NN-rescattering: χ EFT potential & deuteron wave-function fully consistent.
- Thomson limit & $\Delta(1232)$ in ³He.
- Breakups like $\gamma d \rightarrow \gamma np$ (Kossert data)

Explore knobs and handles for credible error-bars $\leq 0.3(?)$, exp. planning: Picture emerging.

Next focus of attention.

Work!, with Bochum-Krakow.

Simple.

Long-term.

(a) Spin-Dependent Dynamical Polarisabilities from Multipole Analysis hg/...2003-4

Spin-physics dominated by pion-cloud + Δ . No *N*-core contributions.

Assumptions: $\alpha_{E1}(\omega)$, $\beta_{M1}(\omega)$ well captured, only two spin-polarisabilities $\gamma_{E1E1}(\omega)$, $\gamma_{M1M1}(\omega)$ large; superficial fit to existing data.

 \implies precision experiments on $p, d, {}^{3}$ He: MAXLab, TUNL/HI γ S, MAMI, S-DALINAC, LARA, ...

(b) Messages for the Chiral Power-Counting

Only phenomenological input:

Non-relativistic system with shallow (real/virtual) bound-state.

$$T_{NN}(E \sim \frac{p^2,k^2}{M}) \sim Q^{-1}$$

 $Q^{2m+3-2} \stackrel{!}{=} Q^m \implies m = -1$

(b) Messages for the Chiral Power-Counting

(b) Messages for the Chiral Power-Counting

One-body: electric, magnetic moment couplings

$$\omega \sim \frac{Q^2}{M} \approx 20 \text{ MeV}$$

LO Q^{-1}

Full LO T_{NN} pivotal for d Thomson at LO. Arenhövel 1980

 N^3LO

(d) Determine Neutron Polarisabilities

estimate theory uncertainty ($\leq \pm 1$): higher-order 1*N*; AV18 vs. LO χ EFT, *d* wave-fu, with vs. without T_{NN} .

 \implies neutron \approx proton polarisabilities