

Sixth International Workshop on Chiral Dynamics Bern, July 6 - 10, 2009

Experimental

Information on V_{us}

Achim Denig (BaBar) Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

VOLUME 10, NUMBER 12-PHYSICAL REVIEW LETTERS 15 JUNE 1963

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

Achim Denig

First Row CKM Unitarity Relation

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \Delta \qquad \begin{array}{c} \Delta & \text{was} \sim 2\sigma \\ \text{up to } 2004 \\ \text{up to } 2004 \\ \text{up to } 2004 \end{array}$$

First Row CKM Unitarity Relation

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 & \lambda^3 \\ \lambda & \lambda^3 \\ \lambda^3 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \Delta \qquad \Delta \operatorname{was} \sim 2\sigma \\ \operatorname{negligible}_{|V_{ub}| = (3.93 \pm 0.36) \cdot 10^{-3}}$$

- Super-allowed $0^+ \rightarrow 0^+$ Nucleus-Decays
- Neutron β-Decay measurement Neutron lifetime measurements
- Pion β -Decay measurement

```
|\mathbf{V}_{ud}| = 0.97425 \pm 0.00022
Phys.Rev.C79 (2009) 055502
Towner - Hardy
```

First Row CKM Unitarity Relation

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 & \lambda & \lambda^{3} \\ \lambda & \lambda & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix}$$
$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 - \Delta \qquad \Delta \text{ was } \sim 2\sigma \text{ up to } 2004 \text{ negligible} \\ |\nabla_{ub}| = (3.93 \pm 0.36) \cdot 10^{-3} \qquad V_{us} \cdot \cdot \cdot$$
$$\cdot \text{ Super-allowed } 0^{+} \rightarrow 0^{+} \text{ Nucleus-Decays} \qquad \cdot \text{ Semileptonic kaon decays} \\ \cdot \text{ Neutron } \beta\text{-Decay measurement} \qquad \cdot \text{ Leptonic kaon decays}$$

- Tau decays into kaon final states
 - Improved theory (lattice, χPT , OPE, ...)

 $\Delta = 0 \Rightarrow |V_{us}| = 0.2255 \pm 0.0010$ Most precise test of CKM Unitarity

Achim Denig

Towner - Hardy

Neutron lifetime measurements

 $|V_{ud}| = 0.97425 \pm 0.00022$

Phys.Rev.C79 (2009) 055502

• Pion β-Decay measurement

Outline

Kaon Decays

- Semileptonic K₁₃
- Leptonic K_{12}/π_{12}

- → see M. Antonelli talk!
- → see Ch. Sachrajda, J. Bijnens, U. Heller, I. Rosell, H. Neufeld talks!

Tau Decays

- Inclusive using OPE
- Exclusive $\tau \rightarrow K\nu/\pi\nu$

V_{us} from Kaon Decays

$$\Gamma_{Kl3} = \frac{G_F^2 \cdot M_K^5}{192 \pi^3} S_{EW} | V_{us} | f_+^2(0) \cdot I^{Kl}(\lambda_I) \cdot (1 + \delta_{EM})$$

Partial Decay Width (Experiment) → BR's → Lifetimes

Achim Denig

Experimental Information on V_{us}

Achim Denig

Theoretical challenge: $f_+(0)$

- Discrepancy btw. Lattice and ChPT, which tends to give higher values for $f_+(0)$
- Trend is to use lattice results,

FLAVIANET FLAG recommendation: $f_+(0) = 0.9644(49)$ RBC/UKQCD '07

Summary V_{us} from K_{l3} Decays

K_{l3} average: $|V_{us}| f_{+}(0) = 0.21660(47)$

With $f_{+}(0) = 0.9644(49)$ from lattice QCD:

$$K_{l3}$$
 average: $|V_{us}| = 0.2246(12)$

Using $|V_{ud}| = 0.97425(22)$ (Towner-Hardy '09)

$$V_{ud}^2 + V_{us}^2 - 1 = -0.0004(7)$$

Compatibility with unitarity -0.6σ

was 0.031(15) in PDG04

 $V_{\mu s}$ from K_{12} Decays

 $\frac{[1.189(7)]^2 \text{HPQCD/UKQCD 08}}{\Gamma(K_{\mu 2(\gamma)})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{m_K (1 - m_\mu^2 / m_K^2)^2}{m_\pi (1 - m_\mu^2 / m_\pi^2)^2} \begin{bmatrix} 1 + \alpha (C_K - C_\pi) \end{bmatrix}$

Inputs from experiment:

KLOE: BR $(K^{\pm}_{\mu 2(\gamma)}) = 0.6347(18)$ $\tau_{K\pm} = 12.384(15) \text{ ns}$

PDG: BR $(\pi^{\pm}_{\mu^{2}(\gamma)}) = 0.9999$ $\tau_{\pi^{\pm}} = 26.033(5)$ ns

 $|V_{us}|/|V_{ud}| = 0.2319(15)$ $|V_{us}| = 0.2259(15)$

 $V_{\mu s}$ from K_{12} Decays

 $\frac{[1.189(7)]^2 \text{HPQCD/UKQCD 08}}{\Gamma(K_{\mu 2(\gamma)})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{m_K (1 - m_\mu^2 / m_K^2)^2}{m_\pi (1 - m_\mu^2 / m_\pi^2)^2} \begin{bmatrix} 0.9930(35) \text{ Marciano '04} \\ 1 + \alpha (C_K - C_\pi) \end{bmatrix}$ 0.23 68% C.L.s **Inputs from experiment:** V_{ud} Vus KLOE: $V_{us} V_{ud}$ $BR(K^{\pm}_{\mu 2(\gamma)}) = 0.6347(18)$ $\tau_{K\pm} = 12.384(15)$ ns 0.225 V_{us} **PDG:** BR($\pi^{\pm}_{\mu 2(\gamma)}$) = 0.9999 unitarity $\tau_{\pi\pm} = 26.033(5)$ ns $|V_{us}|/|V_{ud}| = 0.2319(15)$ V_{ud} 0.22 – 0.97 $|V_{us}| = 0.2259(15)$ 0.975

Achim Denig

V_{us} from Tau Decays

The branching fractions and invariant mass distributions are the experimental input to determine V_{us} from τ .

V_{us} : The Master - Formula for τ - Decays

The branching fractions and invariant mass distributions are the experimental input to determine V_{us} from τ .

V_{us} : The Master - Formula for τ - Decays

Achim Denig

B - *Factories are also* τ - *Factories*

At $\Upsilon(4S)$ energies: $\sigma(e^+e^- \rightarrow \tau^+\tau^-) \sim \sigma(e^+e^- \rightarrow BB) \sim 0.9$ nb \rightarrow Huge tau rates \rightarrow Tagging

- Both experiments have a very large ($\sim 10^9$) sample of tau events
- Detectors are well matched to do tau physics:
 - K/ π particle ID, γ/π^0 reconstruction, charged particle tracking, etc.
- Can reduce most non-tau backgrounds to $\leq 1\%$:
 - Bhabhas, μ -pairs, $e^+e^- \rightarrow q\bar{q}$

Recent τ Results relevant for V_{us}

Mode	BaBar		Belle Selle	
τ-→π ⁻ ν	Preliminary ICHEP08	467 fb ⁻¹		
τ -→K ⁻ ν	Preliminary ICHEP08	467 fb ⁻¹		
$\tau \rightarrow K^0 \pi^- \nu$	Preliminary ICHEP08	385 fb ⁻¹	PLB654(2007) 65	351 fb ⁻¹
$\tau \rightarrow K^{-}\pi^{0}\nu$	PRD76(2007)051104	230 fb ⁻¹		
$\tau \rightarrow \pi^{-}\pi^{-}\pi^{+}\nu$	PRL100(2008)011801	342 fb ⁻¹		
$\tau \rightarrow K^{-}\pi^{-}\pi^{+}\nu$	PRL100(2008)011801	342 fb ⁻¹	Preliminary ICHEP08	500 fb ⁻¹
$\tau \rightarrow K^{-}\pi^{-}K^{+}\nu$	PRL100(2008)011801	342 fb ⁻¹	Preliminary ICHEP08	500 fb ⁻¹
$\tau \rightarrow K^-K^-K^+\nu$	PRL100(2008)011801	342 fb ⁻¹	Preliminary ICHEP08	500 fb ⁻¹
			τ−→K ⁻ φν, PL B643 (2006) 5	
τ ⁻ →K ⁻ /K* ⁻ η ν			Preliminary EPS07 arXiv:0708.0733	485 fb ⁻¹

Achim Denig

BR($\tau \rightarrow K^{-} \pi^{0} v_{\tau}$)

PRD 76:051104, 2007

Achim Denig

Extraction of V_{us} using τ - Data

Extraction of V_{us} using τ - Data

Extraction of V_{us} using τ - Data

$$V_{us}$$
 from $\tau \rightarrow K \nu$, $\tau \rightarrow \pi \nu$

$$\frac{\Gamma(\tau \to K\nu)}{\Gamma(\tau \to \pi\nu)} = \frac{\left|V_{us}\right|^2}{\left|V_{ud}\right|^2} \frac{f_K^2}{f_\pi^2} \left(\frac{1 - m_K^2 / m_\tau^2}{1 - m_\pi^2 / m_\tau^2}\right)^2 \left(1 + \delta_{RC}^{\tau}\right)$$

- Assume universality of couplings
- EW corrections cancel (apart from known long distance corrections δ_{RC})
- Take f_K/f_{π} from Lattice QCD f_K/f_{π} = 1.189±0.007 HPQCD/UKQCD 08
- $|V_{ud}|$ known
- Determine $B(\tau \rightarrow K \nu)/B(\tau \rightarrow \pi \nu)$

Preliminary V_{us} from $\tau \rightarrow Kv$, $\tau \rightarrow \pi v$

 $B(\tau \rightarrow K^{-}\nu)/B(\tau \rightarrow \pi^{-}\nu) = 0.06531 \pm 0.00056 \pm 0.00093$

$$\frac{\Gamma(\tau \to K\nu)}{\Gamma(\tau \to \pi\nu)} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \left(\frac{1 - m_K^2 / m_\tau^2}{1 - m_\pi^2 / m_\tau^2}\right)^2 \left(1 + \delta_{RC}^\tau\right)$$

 $|V_{us}| = 0.2255 \pm 0.0019 \pm 0.0014$ Perfect agreement with Unitarity

BaBar prel.

Preliminary $V_{\mu s}$ from $\tau \rightarrow K \nu$, $\tau \rightarrow \pi \nu$

 $\frac{\mathbf{F}(\tau \to K \tau) / \mathbf{B}(\tau \to \pi \tau) = 0.06531 \pm 0.00056 \pm 0.00093}{\Gamma(\tau \to K \tau)} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_k^2}{f_\pi^2} \left(\frac{1 - m_k^2 / m_\tau^2}{1 - m_\pi^2 / m_\tau^2}\right)^2 \left(1 + \delta_{RC}^{\tau}\right)$

|V_{us} | = 0.2255±0.0019±0.0014Perfect agreement with Unitarity

BaBar prel.

• However:

 $|V_{us}| = 0.2227 \pm 0.0037 \pm 0.0014$ from ratios of PDG08 fit values for $\tau \rightarrow K\nu$ and $\tau \rightarrow \pi\nu$ combining these with BaBar value gives: $0.2249 \pm 0.0017 \pm 0.0014$

• With a Belle measurement of same precision as BaBar, can expect error to decrease to $\pm 0.0013 \pm 0.0014$

Achim Denig

Conclusions

Experimental Information on V_{us}

Summer 2009 knowledge of V_{us}

Experimental Information on V_{us}

V_{us} determination using τ has potential to get sensitivity of K₁₃ and K₁₂ → Completion of the τ strange decay experimental programme → Understand potential issues related to δR_{τ} (OPE) and $f_{+}(0)$ for K₁₃

Achim Denig

Experimental Information on V_{us}

V_{us} determination using τ has potential to get sensitivity of K₁₃ and K₁₂ → Completion of the τ strange decay experimental programme → Understand potential issues related to δR_{τ} (OPE) and $f_{+}(0)$ for K₁₃

Achim Denig

$|V_{us}|$ using different weight functions in

FESR to provide δR_{OPE}^{w}

Achim Denig

Combination of tau and e+e- data in FESR

Achim Denig

Comments on 3 Sigma Tension in FESR τ

- Still need to complete the programme of measurements – so ~3σ discrepancy in FESR |V_{us}| most probably will go away
- If 3σ discrepancy in FESR $|V_{us}|$ increases in significance, may need to consider theories/models that accommodate a tau FESR $|V_{us}|$ different from the pseudo-scalar ratio determination of $|V_{us}|$
- Perhaps a 3rd generation lepton coupling that cancels in the pseudoscalar ratio(?)
- Perhaps something that is more sensitive to final state hadronic system with spin=1(?)
- Lepto-quarks come to mind (?)

Callan - Treiman Relation

$$\begin{split} t_{\rm CT} &= {m_K}^2 - {m_\pi}^2 \\ \Delta_{\rm CT} &= SU(2) \text{-breaking correction} \\ &= -(3.5 \pm 8.0) \times 10^{-3} \\ &\quad \text{in NLO ChPT } (m_u = m_d) \end{split}$$

KLOE

ISTRA+

NA48

KTeV

0.9

0.95

in NLO ChPT $(m_u = m_d)$ UKQCD/RBC UKQCD/RBC USe C Net Kaon WG λ_0^{C} λ_0^{C}

1

 $f_{+}(0)$

1.05

Callan-Treiman relation:

$$\tilde{f}_0(t_{\rm CT}) = \frac{f_K}{f_\pi} \frac{1}{f_+(0)} + \Delta_{CT}$$

Use dispersive parameterization of $f_0(t)$

KLOE $K_{e3-\mu3}$ data: $\lambda_0^{\ C} = (14.0 \pm 2.1) \times 10^{-3}$ $\rightarrow f_+(0) = 0.968(28)$

NA48 $K_{\mu 3}$ data: In C = 0.1438(138) $\rightarrow f_{+}(0) = 1.027(20)$

Lattice QCD $f_{+}(0) = 0.964(5)$

Extracting $|V_{us}|$ The weighted spectral functions $R_{\tau,ij}^{w}(s_0) = \int_{0}^{s_0} ds \ w(s) \frac{dR_{\tau,ij}}{ds}$ (*ij* = *ud* or *us*) may be written as: $P_{\tau,ij}^{w}(s_0) = \sum_{0}^{s_0} (|V_{\tau}|^2 s^{kl}(P_{\tau}) + |V_{\tau}|^2 s^{kl}(P_{\tau}))$

$$R_{\tau,ij}^{w}(s_{0}) = 3S_{EW} \left\{ \left(\left| V_{ud} \right|^{2} + \left| V_{us} \right|^{2} \right) \left(1 + \delta^{kl(0)} \right) + \sum_{D \ge 2} \left(\left| V_{ud} \right|^{2} \delta_{ud}^{kl(D)} + \left| V_{us} \right|^{2} \delta_{us}^{kl(D)} \right) \right\}$$

When one takes the flavour breaking difference,

$$\delta R_{\tau}^{w}(s_{0}) = \frac{R_{\tau,ud}^{w}(s_{0})}{|V_{ud}|^{2}} - \frac{R_{\tau,us}^{w}(s_{0})}{|V_{us}|^{2}}$$

the D=0 terms cancel leaving D \geq 2. Thus:

$$|V_{us}| = \sqrt{\frac{R_{us}^{w}(s_{0})}{(R_{ud}^{w}(s_{0})/|V_{ud}|^{2}) - \delta R_{OPE}^{w}(s_{0})}}$$

where $\delta R_{OPE}^{w}(s_0)$ must be calculated and $R_{ij}^{w}(s_0)$ measured Note: Because the D=0 term is significantly greater than the D=2 term, a large uncertainty on the OPE expansion still yields a small uncertainty on $|V_{us}|$

Achim Denig

Extracting $|V_{us}|$ from τ -Spectral Function Strange and non-strange Hadronic Width $R_{\tau,ij} = \frac{Br(\tau^- \rightarrow v_{\tau}hadrons_{ij}^-)}{Br(\tau^- \rightarrow v_{\tau}\overline{v_e}e^-)}$ where ij = ud or us

May be written in terms of the spectral density function

$$R_{ij} = 12S_{EW}\pi^2 |V_{ij}|^2 \int_{0}^{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + \frac{2s}{m_{\tau}^2}\right)\rho_{ij}^{(1)}(s) + \rho_{ij}^{(0)}(s)\right] \frac{ds}{m_{\tau}^2}$$

or in terms of the 2 point correlator function

$$R_{ij} = 12S_{EW}\pi \left|V_{ij}\right|^2 \frac{-1}{2\pi i} \oint_{|s|=m_r^2} \left(1 - \frac{s}{m_r^2}\right)^2 \left[\left(1 + \frac{2s}{m_r^2}\right)\Pi_{ij}^{(1)}(s) + \Pi_{ij}^{(0)}(s)\right] \frac{ds}{m_r^2}$$

Achim Denig

e.g. A set of 'spectral moments' has been used in the FESR as the particular weight functions w

$$R_{\tau,ij}^{kl} = \int_{0}^{s_0} ds \left(1 - \frac{s}{m_{\tau}^2}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \left(\frac{dR_{\tau,ij}}{ds}\right)$$

For (k,l)=(0,0), R⁰⁰ is obtained from the BR of strange decays

Achim Denig

$$V_{ud} from 0+ \rightarrow 0+$$

$$V_{ud} from 0+$$

Lepton Universality from prel. BaBar result

For phase space integral need to parameterize and measure FF-dependence on t

Achim Denig

The 2004 Kaon Revolution: K_{l3} BR's

