CURRENT ALGEBRA

® J At =0 for my =0
= Fr =2mpnga/Gr Nambu 1960

e 7 Goldstone boson
Goldstone 1961: Nambu 1961:
Goldstone, Salam, SW 1962

e Single pion emission

Nambu & Shrauner/Lurie 1962
e Current commutators Gell-Mann 1964

® g4 sum rule Adler, Weisberger, 1965
SU(2) x SU(2) ( — 50(4))
Strong Interactions:

o N — wN Tomozawa, SW, 1966
ot — 7w SW 1966



Multiple Pion Emission SW 1965
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Adjust constants as dictated by current
algebra:
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Direct approach: SW 1968

For an SO(4) rotation in the a4 plane
(a = 1,2,3) by a small angle ¢, the
change in the pion field is

1 7 TaTp
—l1—=9

2 ( F,,%) ab ¥ T2
and the change in any other field 1/ with
Isospin matrix tis

Sip — F%(Fx ﬁ)a¢

oy, = —ieby

Generalization: G +— H
Callan, Coleman, Wess, Zumino 1969

Anomalous terms: Wess & Zumino 1971:
Witten 1983: D'Hoker & SW 1994
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The Standard Model

QCD = SU(3) x SU(3) x U(1)p,
broken only by m,, & mg & mg

(with SU(2) x SU(2) broken only by

My, md)

Electroweak Theory = W+ & ZV & ~
couple to SU(3) x SU(3) x U(1)p

currents.

The success of the Standard Model high-

lighted the importance of renormalizabil-

ity. But chiral Lagrangians are non-renormalizable,
and so were still considered to be limited

to the tree approximation, and justified

only by current algebra.



SW 1979:
Non-renormalizable theories are just as
renormalizable as renormalizable theories.

In calculating the amplitude for a reac-
tion involving pions and nucleons with
kinetic energies of order m , a diagram
with V; vertices of type ¢, L loops, and
E'n; external nucleon lines, makes a con-
tribution proportional to (kinetic energy)”,
where

E

IiEdi+7i+mi

and d;, n;, and m; are the numbers of
derivatives, nucleon fields, and pion masses
at a vertex of type .

Chiral symmetry = Z; > 2.
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Leading terms: L = 0 and any number
of vertices with Z; = 2:

onizO,di=2,mi=O (7T7T>
Ofni:o,dz‘:o,mi:Q (7T7T>
oni:2,di=1,mi=() (ﬂ'N)

First Correction: L = 0, any number of

vertices with Z; = 2, and one vertex with
Ii = J:

on;=2,d; =0, m; =2 (o term)

Next Correction: Any number of vertices
with Z; = 2, and either

1) L = 0 and two vertices with Z; = 3,
or

2) L =1, or

3) L = 0 and one vertex with Z; = 4,
acting as counterterm.
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But why should we believe these
calculations?

Folk Theorem: “if one writes down the
most general possible Lagrangian, includ-
ing all terms consistent with assumed
symmetry principles, and then calculates
matrix elements with this Lagrangian to
any given order of perturbation theory ,
the result will simply be the most general
possible S-matrix consistent with ana-
lyticity, perturbative unitarity, cluster de-
composition, and the assumed symmetry
properties.”

Current algebra is not needed.

Gasser, Leutwyler, Meissner, . ..
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Isospin Violation SW 1994, 1996
Limass = V4 + VSI

— %(mu +my) (ﬂu +- Jd)

1 )
Vy = §(mu —my) (ﬂu — dd)

Mg/ My >~ 1.9 SW 1977
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Nuclear Forces SW 1990, 1991, 1992

Leading terms:

IiEdZ'—I—%-i-mi:Z & L =0

oni:O,dZ‘ZQ,mi:O
on; =0,d,=0,m; =2
oni=2,di=1,mi=0

oni:4,d¢:(),m@-:0

Ordonez, Van Kolck, Friar, ...
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Effective Field Theories Beyond the
Strong Interactions

1. Justifying BCS approximations

Benfatto and Gallavotti, 1990

Feldman and Trubowitz 1990, 1991, 1992
Shankar, 1991, 1993

Polchinski, 1992

SW 1994

2. General Inflation

Cheung, Creminilli, Fitzpatrick, Kaplan,
& Senatore 2008
SW 2009



Is the Standard Model field theory fun-
damental, or just the leading (renormal-
izable) term in an effective field theory?
Is the underlying theory a quantum field
theory?

a. The SU(3), SU(2), and U(1) run-
ning couplings (suitably normalized) be-
come almost equal at an energy of order
1012 GeV (or 2 x 1016 GeV for SUSY,

with improved convergence). This sug-
gests new physics at an energy

M~ 10" to 109 Qev.
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b. The Standard Model automatically
conserves B and L (without SUSY, or
with split SUSY), so there is no need to
assume B-conservation and L-conservation
are fundamental symmetries. If not fun-
damental, then we expect interactions:

9_2 U U qbO (/50

M\ e e ¢+ ¢+
SW 1979

Forg=~1, M =~ 1016 GeV, get

my ~ 1072 eV.

1
quqf

SW, Wilczek 1979

Perhaps from GUT, perhaps not.
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c. GRAVITATION AS AN EFFECTIVE
FIELD THEORY

With an ultraviolet cut-off A,

I = — / e /=Detg | folA) + fi(A)R

+f2q (A) R2 + f2b(A) R'LWR,(W

+ fa (MR + ...

The A-dependence of the couplings fi,(A)
is such that physics is independent of A.

Large r applications: Donoghue 1994

16



Introduce dimensionless couplings:

G =A"fo; 1 =ANTf15 920 = foa
_ 22
9op = Jfovs 93¢ = N30 -

Aign(/\> = On (9<A)>

dA\

Perturbatively most g,,(A) go to infinity
for A — oo. They may even become
infinite at a finite value of A.

(Landau 1955; “Triviality” in ¢* theory)
We usually assume that this doesn’t mat-
ter, because before the couplings blow
up, other degrees of freedom (strings?
Hofava?) will become important, just
as gluons and quarks replace pion and
nucleon fields at high energy in chiral dy-
namics. ' But maybe not.

17



Maybe what you see is what you get.
ASYMPTOTIC SAFETY

The theory is safe from couplings blow-
ing up if B(g«x) = 0 and g(A) is on a
trajectory attracted to g«.(SW, 1976)

QCD: g« =0
More generally, g« # 0.

Trajectories with ¢ — g4« for A — oo
form the ultraviolet critical surface. The
physical requirement that the actual cou-
plings lie on the UV critical surface plays
the same role for asymptotically safe the-
ories as does renormalizability™in quan-
tum electrodynamics or quantum chro-
modynamics.

* no Pauli moment, no ¢
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The number of free parameters equals
the dimensionality of the UV critical sur-
face. This had better be finite.

For g — gx,

Bnlg) — ZBnm(Qm_g*m) , Bnm = (

0%(9))

gn(N) = gns + Z jp AN
1

where

E Bnm uim = )‘i um .
m

The dimensionality of the UV critical sur-
face equals the number of eigenvalues of
By,m with negative real part.
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Example — 2nd-order phase transition:

3 fixed point with 1 IR repulsive direction
(only need to adjust temperature) so UV
critical surface is one-dimensional.

Example — Tricritical point:

3 fixed point with 2 IR repulsive direc-
tions (only need to adjust temperature
& pressure) so UV critical surface is two-
dimensional.

But in these cases the effective theory
breaks down when

A = 1/particle separation .
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Indications of Asymptotically Safe
Gravitation

e Dimensional Continuation (d = 2+¢)

—SW 1979

— Kawai, Kitazawa, & Ninomiya, 1993,
1996

— Aida & Kitazawa, 1997 (2 loops)
— Niedermaier 2003

e 1 /N Expansion
—Smolin 1982 (R + C?)
— Percacci, 2006

e Lattice Quantization

— Ambjgrn, Jurkewicz, & Loll, 2004,
2005, 2006, 2008
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e Truncated ‘Exact” Renormalization Group

— Wegner & Houghton, 1973

— Polchinski, 1984

— Wetterich, 1993

(Exact renormalization group equations
link all gn(A). One truncates these
equations by setting all but a finite
number of g,,(A) equal zero, ignoring

the non-zero value of the 3,(g) for
which gy, is set equal to zero.)

— Reuter, 1998

— Dou & Percacci, 1998 (gravity +
free matter)

— Souma, 1999 (R + A, 2 attractive
directions)

— Lauscher & Reuter, 2001 (R + A,
2 attractive directions)
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— Reuter & Saueressig, 2002 (R+ A,
2 attractive directions)

— Lauscher & Reuter, 2002 (R+ A+
R2. 3 attractive directions)

— Reuter & Saueressig, 2002

— Percacci & Perini, 2002, 2003
(constraints on free matter)

— Perini, 2004

— Litim, 2004

— Codello & Percacci, 2006

— Reuter & Saueressig, 2007

— Machado & Saueressig, 2007
— Litim, 2008
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With only 2 non-zero couplings, fixed
point has 2 UV attractive directions.
With only 3 non-zero couplings, fixed
point has 3 UV attractive directions.
This was not encouraging.

Good News!

— Codello, Percacci, & Rahmede, 2008

Nmax

L=3> R
n=0

For nmax = 2,3,4,5, or 6, 4 just 3
attractive directions

— Codello, Percacci, & Rahmede, 2008,
same with matter, again 3 attrac-
tive directions
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— Benedetti, Machado, & Saueres-
sig, 2009, RV, R, R?, C?,
3 attractive directions

— Benedetti, Machado, & Saueres-
sig, 2009, the same with matter,
again 3 attractive directions. (No
unphysical poles.)

These results suggest the existence of an
asymptotically free quantum field theory
of gravity with no problems at infinite
energy and just three free parameters.

25



Convergence

Codello, Percacci, & Rahmede, 2008

Nmax = 2
Nmax = 3
Nmax = 4
Nmax = 9

nmax:6

Nmax

L=3) fR"
n=0

UV attractive eigenvalues

—1.38 = 2.321
—2.714+2.27T¢
—2.86 = 2.457
—2.53 = 2.69¢
—2.41 £ 2.42%
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EARLY UNIVERSE

In terms of dimensionless couplings,

lg = —/d4x v/ —Detg

+g24(A) R? + gop(N)RMY Ry,

A*go(A) + Ag1 (AR

+A g (MR + ...

Physics is independent of A, but only
if we include radiative corrections (loop
graphs) with an ultraviolet cutoff A. This
is hard. But we can choose A to mini-
mize radiative corrections, and use [.g
in tree approximation to derive the field
equations.
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For S-matrix elements, radiative correc-
tions are small if A is less than typical ex-
ternal momenta. For vacuum amplitudes
in presence of background Robertson—
Walker metric, it is plausible that ra-
diative corrections are small if A < H.

(H = a/a.) If H is sufficiently large,
we can also take A large enough so that
gn(A) = gnx -

There is always a de Sitter solution:

— 9
dr? = dt? — 2Htq"

R R\?
200+ 12 )9\ 2 93gx+--- =0,

R=_—12H?.

We need a root with |R|/A? > 12.
For this solution, inflation never ends.
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But there are also solutions with a more
general Robertson—Walker metric:

dr? = dt? — d(t)da

for which H decreases with time, and

R R\?
290+ (—) 1%~ (P) 3t .. #0,

R=—12H% —6H

Example:

Lglg, A] = —A* / d*z \/—Detg F(R)

gox + (RN g1s + (R/AN*)gos
+HR/A g3 + . ..

F(R)
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General field equation:

F(R) Ry + F'(R)R .y + F"(R)R R,

1
= Guv éF(R) T F”<R)R,)\;U g/\g

+ F"(R)R\R g™

For a Robertson-Walker solution, we only
need 00 component of field equation:

0= HRF”(R)—(H+H2)F’(R)—éF(R)

R=—12H? —6H
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Condition for de Sitter solution:
RF'(R)/F(R)=2, R=—12H"

If RE'(R)/F(R) is only near 2, 3 a
solution with H nearly constant, and

H _ 1(RF'(R) )
H? 3 ( F(R) )

H decreases slowly if RE'(R)/F(R) is
a little greater than 2. Eventually H
would fall below A, and radiative cor-
rections become important. But we can
reduce A to restore the ratio of H/A,

and continue the slow decrease of H.*

*In a different model, Bonanno & Reuter
(2002, 2004) and Reuter & Saueressig

(2005) change A continuosly.

31



As long as H changes slowly, and

gn(A) =~ gn«, the quantity RF'(R)/F(R)
depends only on H/A, so this quantity
stays near 2 as we reduce A to keep
H/A constant. But eventually A be-
comes small enough so that g,,(\) moves
away from g%, and then reducing A fur-

ther to keep A < H will change RF'(R)/F(R),
and so inflation ends.

32



	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

