EXPERIMENTAL RESULTS FROM MAMI

Harald Merkel Johannes Gutenberg-Universität Mainz, Germany

6th International Workshop on Chiral Dynamics Bern, Switzerland

July 10th, 2009

- $\bullet \eta \text{ and } \eta' \text{ Decays}$
 - $\blacktriangleright \eta \to \pi^0 \pi^0 \pi^0$
 - Cusp in η decays
- Polarizabilities of the Nucleon
 - Virtual Compton Scattering
 - Spin Polarizabilities
- Threshold Pion Production
 - $\blacktriangleright Q^2$ Dependence
 - ► Polarized Beam Asymmetry Σ

η and η' Decay

Motivation: η and η' Decay

 $\eta,\;\eta'\to\pi^0\pi^0\pi^0$

• Isospin violating $\Delta I = 1 \Rightarrow \sim$ light quark mass difference $m_u - m_d$

- Calculations in ChPT
 - ▶ Decay amplitude at $O(p^2)$ (J. Gasser, H. Leutwyler NPB250, 539 (1985)):

$$A(s,t,u) = \frac{B_0(m_u - m_d)}{3\sqrt{3}F_{\pi}^2} \left[1 + \frac{3(s - s_0)}{M_{\eta}^2 - M_{\pi}^2}\right] \sim \frac{m_d - m_u}{m_s - \hat{m}}$$

- ▶ ChPT $O(p^6) \Rightarrow$ in disagreement with data
- Structure of the η , *e.g.* $\eta_1 \eta_8$ mixing?
- Final State Interaction, unitary chiral approach
- Cusp in $3\pi^0$ Dalitz plot $\Rightarrow \pi^0\pi^0 \rightarrow \pi^+\pi^-$ Scattering length

$$|A_{\eta \to 3\pi^{0}}|^{2} \sim 1 + 2\alpha z + \cdots$$

with $z = 6\sum_{i=1}^{3} \frac{(E_{i} - m_{\eta}/3)^{2}}{(m_{\eta} - 3m_{\pi^{0}})^{2}} = \frac{\rho^{2}}{\rho_{max}^{2}}$

Experimental technique:

- Identified $3\pi^0$ decay $\Rightarrow 4\pi$ detector for photons
- Comparison of decay slope with Monte-Carlo-Simulation

A2 Crystal Ball and TAPS Photon Spectrometer

 $\sigma_E/E = 2\%/\sqrt[4]{E(GeV)}$

 $\alpha = -0.0322 \pm 0.0012 \pm 0.0022$

S. Prakhov et al., Phys. Rev. C79, 035204 (2009)

Details → Talk by Sergey Prakhov (Tuesday)

Harald Merkel, Chiral Dynamics 2009

Decay $\eta \rightarrow 3\pi^0$

Dalitz Plot Parameter α :

MAMI-B

 $\alpha = -0.0319 \pm 0.0015 \pm 0.0016$

MAMI-C

 $\alpha = -0.0322 \pm 0.0012 \pm 0.0022$

- Consistent with Crystal Ball@BNL / KLOE
- Theory: UChPT
- Cusp on slope?

MAMI-B: M. Unverzagt *et al.*, Eur. Phys. J. A39, 169-177 (2009) MAMI-C: S. Prakhov *et al.*, Phys. Rev. C79, 035204 (2009) UChPT: B. Borasoya and R. Nißler, Eur. Phys. J. A 26, 383-398 (2005)

Cusp in slope

 $\label{eq:rescattering} \eta \to \pi^0 \pi^+ \pi^- \to \pi^0 \pi^0 \pi^0 \quad \text{at threshold}$

• Near future: $3 \cdot 10^6 \rightarrow 30 \cdot 10^6$ detected η -Decays

• Also visible in $\eta' \rightarrow \eta \pi^0 \pi^0$, larger effect

Polarizabilities of the Nucleon

Polarizability α : induced dipole moment $\vec{d} = \alpha \vec{E}$

- Direct measure of electric (α) and magnetic (β) stiffness of nucleon
- Fundamental static properties of the nucleon
- Spin polarizabilities

COMPTON SCATTERING \Rightarrow Polarizabilities in static limit $q' \rightarrow 0$

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} - \frac{e^2}{4\pi m_p} \left(\frac{q'}{q}\right)^2 q \, q' \left\{\frac{1}{2}(\bar{\alpha} + \bar{\beta})(1 + \cos\theta)^2 + \frac{1}{2}(\bar{\alpha} - \bar{\beta})(1 - \cos\theta)^2\right\} + \cdots$$

$Data/(10^{-4} fm^3)$	HBChPT ($\mathcal{O}(p^4)$)
$\alpha = 12.1 \pm 0.3_{stat} \pm 0.5_{syst}$	10.5 ± 0.2
$\beta = 1.6 \pm 0.4_{stat} \pm 0.6_{syst}$	3.5 ± 3.6

Harald Merkel, Chiral Dynamics 2009

• Polarizabilities depend on photon virtuality Q^2 \Rightarrow Generalized Polarizabilities

• Interpretation of $GP(Q^2)$:

 \Rightarrow "Form Factor" measurement in external field

 \Rightarrow Fouriertransform of local distribution of polarizabilities

VCS ^[1]	EM transition	Spin flip		Besonance
VC3		Spin nip		Tresonance
$P^{(01,01)0}$	$C1 {\rightarrow} E1$	S=0	$-\frac{1}{\alpha}\sqrt{\frac{2}{3}} \alpha_E$	D13, S11
$P^{(11,11)0}$	$M1 \rightarrow M1$	S=0	$-\frac{1}{\alpha}\sqrt{\frac{8}{3}}\beta_M$	P33, P11
$P^{(01,12)1}$	$M2{\rightarrow} E1$	S=1	$-\frac{1}{\alpha}\frac{\sqrt{2}}{3}\gamma_3$	D13
$P^{(11,02)1}$	$C2 \rightarrow M1$	S=1	$-\frac{1}{\alpha}\sqrt{\frac{8}{27}}(\gamma_2+\gamma_4)$	P33
$P^{(11,00)1}$	$C0 \rightarrow M1$	S=1		P11
$P^{(11,11)1}$	$M1 \rightarrow M1$	S=1		P33, P11
$P^{(01,01)1}$	$C1\!\rightarrow E1$	S=1		D13, S11
$\hat{P}^{(11,2)1}$	C2, E2 \rightarrow M1	S=1		P33
$\hat{P}^{(01,1)1}$	C1, E1 \rightarrow E1	S=1		D13, S11
$\hat{P}^{(01,1)0}$	C1, E1 \rightarrow E1	S=0		D13, S11

• Defined only in limit $q' \rightarrow 0$, linear in q'

- Angular momentum conservation \Rightarrow 10 Generalized Polarizabilities
- Charge-conjugation, crossing^[3] \Rightarrow Only 6 independent GP's

P. A. M. Guichon, G. Q. Liu, A. W. Thomas, Nucl. Phys. A 591 606 –638 (1995)
 S. Ragusa, Phys. Rev. D 47, 3757 (1993)
 D. Drechsel *et al.*, Phys. Rev. C 57,2, 941 (1998)

Low Energy Expansion (LEX)

Expansion in outgoing photon momentum q'

$$\frac{d^{5}\sigma}{dE'd\Omega'd\Omega_{\gamma}^{cm}} = d^{5}\sigma^{BH+Born} + \phi q' \Psi_{0}(q,\varepsilon,\theta,\phi) + O(q'^{2})$$

First order given by Bethe-Heitler + Born

First non trivial term in q' expansion: Interference between Bethe-Heitler + Born and VCS

Dispersion Relations (DR)

- \blacktriangleright Connects π -Photo- and Electroproduction with VCS
- Two parameter: $\Lambda_{\alpha}(Q^2)$ and $\Lambda_{\beta}(Q^2)$

LEX: P. A. M. Guichon, G. Q. Liu, A. W. Thomas, Nucl. Phys. A 591 606 –638 (1995) DR: B. Pasquini *et al.*, Eur. Phys. J. A 11, 185 – 208 (2001)

Low Energy Expansion (LEX)

$$\frac{d^{5}\sigma}{dE'd\Omega'd\Omega_{\gamma}^{cm}} = d^{5}\sigma^{BH+Born} + \phi q'\Psi_{0}(q,\varepsilon,\theta,\phi) + O(q'^{2})$$

• Unpolarized experiment:

$$\Psi_0 = v_1(\theta, \phi, \epsilon)(P_{LL}(q^2) - P_{TT}(q^2)/\epsilon) + v_2(\theta, \phi, \epsilon)P_{LT}(q^2)$$

• Varying $\theta, \phi, \epsilon \Rightarrow 3$ Structure functions:

$$P_{LL}(q^{2}) = -2\sqrt{6} m_{N} G_{E} P^{C1 \to E1}$$

$$P_{TT}(q^{2}) = 3 G_{M} |\vec{q}|^{2} \left(\sqrt{2}P^{C2 \to E1(S)} - \frac{1}{q_{0}}P^{M1 \to M1(S)}\right)$$

$$P_{LT}(q^{2}) = \sqrt{\frac{3}{2}} \frac{|\vec{q}|}{Q} m_{N} G_{E} P^{M1 \to M1} + \frac{\sqrt{3}}{2} \frac{Q}{|\vec{q}|} G_{M} \left(P^{C0 \to M1(S)} + \frac{|\vec{q}|^{2}}{\sqrt{2}}P^{C2 \to M1(S)}\right)$$

A1: 3-Spectrometer-Setup at MAMI

Spectrometer A:

$$\alpha > 20^{\circ}$$

 $p < 735 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 20\%$

Spectrometer B:

$$\alpha > 8^{\circ}$$

 $p < 870 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 5.6 \text{ msr}$
 $\Delta p/p = 15\%$

Spectrometer C:

$$\alpha > 55^{\circ}$$

 $p < 655 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 25\%$

Results unpolarized VCS at $Q^2 = 0.33$, $\varepsilon = 0.62$

	$\begin{array}{c} P_{LL}(Q^2) - \frac{1}{\epsilon} P_{TT}(Q^2) \\ \text{[GeV}^{-2}] \end{array}$	$P_{LT}(Q^2)$ [GeV $^{-2}$]
MAMI	$\textbf{23.7} \pm \textbf{2.2} \pm \textbf{4.3}$	$\textbf{-5.0}\pm\textbf{0.8}\pm\textbf{1.8}$
HBChPT	26.0	-5.3
ELM	5.9	-1.9
LSM	11.5	0.0
NRCQM1	11.1	-3.5
NRCQM2	14.9	-4.5

V. Olmos de Leon *et al.*, EPJ A **10** 207-215 (2001)
J. Roche *et al.*, Phys. Rev. Lett **85,4** 708 (2000)

HBChPT	Heavy Baryon Chiral Perturbation Theory
	Th. Hemmert, et al.
	Phys. Rev. Lett. 79 (1997), D 55 (1997)
ELM	Effective Lagrangian Model
	M. Vanderhaeghen, Phys. Lett. B 368 (1996)
LSM	Linear Sigma Model
	A. Metz, D. Drechsel,
	Z. Phys. A356 (1996), A 359 (1997)
NRCQM1	Non Relativistic Constituent Quark Model
	G. Q. Liu, et al. Aust. J. Phys. 49 (1996)
NRCQM2	Non Relativistic Constituent Quark Model
	B. Pasquini, et al., Phys. Rev. C 63 025205 (2001)

- DR: Extraction of α and β with Dispersion Relations
- LEX: Low Energy Expansion
- Proposal MAMI-A1-1-09: $Q^2 = 0.1, 0.2, 0.5 \,\text{GeV}^2/c^2$

Beam-Recoil Polarization

$$\Psi_{0} = v_{1}(\mathbf{P_{LL}} - \mathbf{P_{TT}}/\epsilon) + v_{2}\mathbf{P_{LT}}$$

$$\Delta \Psi_{0}^{z} = 4 h [v_{1}^{z} \mathbf{P_{TT}} + v_{2}^{z}\mathbf{P_{LT}^{z}} + v_{3}^{z} \mathbf{P_{LT}^{\prime z}}]$$

$$\Delta \Psi_{0}^{x} = 4 h [v_{1}^{x} \mathbf{P_{LT}^{\perp}} + v_{2}^{x} \mathbf{P_{TT}^{\perp}} + v_{3}^{x} \mathbf{P_{TT}^{\prime \perp}} + v_{4}^{x} \mathbf{P_{LT}^{\prime \perp}}]$$

$$\Delta \Psi_{0}^{y} = 4 h [v_{1}^{y} \mathbf{P_{LT}^{\perp}} + v_{2}^{y} \mathbf{P_{TT}^{\perp}} + v_{3}^{y} \mathbf{P_{TT}^{\prime \perp}} + v_{4}^{y} \mathbf{P_{LT}^{\prime \perp}}]$$

$$P_{LL} = aP^{C1 \to E1}
P_{TT} = c_1 P^{M1 \to M1(S)} + c_2 P^{M2 \to E1(S)}
P_{LT} = bP^{M1 \to M1} + c_3 \left[P^{C0 \to M1(S)} + d_1 P^{C2 \to M1(S)} \right]
P_{LT}^{z} = c_4 P^{M1 \to M1(S)} + c_3 \left[P^{C0 \to M1(S)} + d_1 P^{C2 \to M1(S)} \right]
P_{LT}^{'z} = c_5 P^{M1 \to M1(S)} + c_6 \left[P^{C0 \to M1(S)} + d_1 P^{C2 \to M1(S)} \right]
P_{LT}^{'\perp} = \left[d_2 P^{C0 \to M1(S)} + d_3 P^{C2 \to M1(S)} \right]$$

 \Rightarrow Out-of-Plane measurement to access P'_{LT}^{\perp}

	Structure Function	ΗΒχΡΤ
	(GeV^{-2})	(GeV^{-2})
$P_{LL} - P_{TT}/\varepsilon$	$25.6~\pm~2.9~\pm2.8$	26.3
P_{LT}	-5.0 \pm 1.1 \pm 2.1	-5.5
P_{LT}^{\perp}	-14.2 \pm 2.8 \pm 2.2	-10.7

Data: L. Doria *et al.*, in preparation HBChPT: C.-W. Kao *et al.*, Phys. Rev. D 70 (2004) 114004

Threshold Pion Photo- and Electroproduction

- Clean test of Chiral dynamics with heavy baryons
 - Photo-/Electroproduction ⇒ well known initial state
 - ▶ π^+ dominated by Kroll-Rudermann-Term ⇒ $\gamma p \rightarrow \pi^0 p$
 - Experiments close to production threshold \Rightarrow *s* and *p*-waves

$$\sigma(\theta) = \frac{q}{k} \left(\mathbf{A} + \mathbf{B} \cdot \cos \theta + \mathbf{C} \cdot \cos^2 \theta \right)$$

$$A = E_{0+}^{2} + \frac{1}{2}(P_{2}^{2} + P_{3}^{2}) \qquad B = 2 \cdot Re(E_{0+}P_{1}^{*}) \qquad C = P_{1}^{2} - \frac{1}{2}(P_{2}^{2} + P_{3}^{2})$$

- ► Known energy dependence for *p*-waves
- Electroproduction ⇒ additional longitudinal multipoles

Physics addressed:

- ▶ *p*-waves: fast converging in HBChPT \rightarrow *p*-wave low energy theorem
- ► *s*-waves: cusp effect of $\gamma p \rightarrow \pi^+ n \rightarrow \pi^0 p$ rescattering
- \blacktriangleright Convergence in photon virtuality Q^2

- Statistical error only
- Rapid variation with Q^2 possible?
 - Separate measurements at different Q^2
 - Data dominated by systematic error

 \Rightarrow Check with 1. improved systematics 2. consistent Q^2 coverage

π^0 Threshold Production (Angular dependence)

Data: H.M. *et al.*, in preparation

- HBChPT: V. Bernard, N. Kaiser, U.-G.Meißner, Phys. Lett. B 378, 337 (1996)
- MAID: D. Drechsel et al., Nucl. Phys. A645 (1999) 145-174, 2007 fit
- DMT: S.S. Kamalov et al., Phys. Rev. Lett. 83, (1999) 4494, Phys. Rev. C 64 (2001) 032201

Q^2 Dependence of π^0 Threshold Production

Data: H.M. et al., in preparation

HBChPT: V. Bernard, N. Kaiser, U.-G.Meißner, Phys. Lett. B 378, 337 (1996) (fit to old data, new fit would improve agreement!!!)

- MAID: D. Drechsel et al., Nucl. Phys. A645 (1999) 145-174, 2007 fit
- DMT: S.S. Kamalov et al., Phys. Rev. Lett. 83, (1999) 4494, Phys. Rev. C 64 (2001) 032201

Meson Threshold Production – Current and Future Experiments

 \rightarrow C. Fernández-Ramírez

Polarized Beam Asymmetry:

$$\boldsymbol{\sigma}(\boldsymbol{\theta},\boldsymbol{\phi}) = \boldsymbol{\sigma}(\boldsymbol{\theta}) \left(1 - P_{\boldsymbol{\gamma}} \cdot \boldsymbol{\Sigma}(\boldsymbol{\theta}) \cdot \cos 2\boldsymbol{\phi} \right)$$

- High statistics experiment
- Analysis in progress

Transverse Polarized Target

Target Asymmetry T

$$T \Rightarrow ImE_{0+} \Rightarrow a_{cex}(\pi^+ n \to \pi^0 p)$$

 $F \Rightarrow$ Test of *d*-wave contribution

Kaon Production $\gamma^* p \rightarrow K + \Lambda, K + \Sigma$

- *SU*(3)
- K^* exchange in *t*-channel \Rightarrow electroproduction
- Coupled channels ...

Summary

${ \bullet \hspace{-.5em} } \eta, \eta' \text{ Decays}$

- \blacktriangleright Slope parameter α
- Rescattering Cusp in Dalitz plot
- High statistics in the next years

Nucleon Polarizabilities

- $\blacktriangleright Q^2$ Dependence in Virtual Compton Scattering
- Polarization Experiments
- Spin Polarizabilities in Real Compton Scattering

Threshold Pion Photo-/Electroproduction

- Stringent test of ChPT including Heavy Baryons
- **Consistent** Q^2 evolution
- Photoproduction will be completed