◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Different Nature of ρ and a_1

Stefan Leupold Markus Wagner

Justus-Liebig-Universität Giessen, Germany

Chiral Dynamics 09, Bern, Switzerland, July 2009

Chiral symmetry breaking and τ decays

study decay $\tau \rightarrow \nu_{\tau} + hadrons$:

- couples to V A (weak process)
- V and A connected by chiral transformation
- G parity: V/A couples to even/odd number of pions
- V and A spectra are not identical:

One of the clearest signs of chiral symmetry breaking

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ALEPH: Phys. Rept. 421, 191 (2005)

Nature of Resonances?

- Low-energy parts of spectra:
 - *ρ* meson in vector channel (left yellow)
 - a1 meson in axial-vector channel (right green)

- → How to understand spectra resonances?
- \hookrightarrow correlations ($\pi\pi$, $\pi\rho$, $\pi\pi\pi$) or preformed states?
- \rightarrow study nature of ρ and a_1 with same method

Nature of resonances I: ρ meson

- experimental finding: isovector-vector current couples to two pions
- pions are subject to final-state interactions (rescattering)
- experimental finding: resonant structure at $\approx 770~MeV$
- → study two scenarios:
 - 1. only final-state interaction between pions
 - 2. include in addition preformed resonance (quark-antiquark)
 - describe final-state interactions via Bethe-Salpeter eq., kernel from lowest-order chiral interaction

 → parameter free

Scenario 1: only final-state interaction

parameters in scenario 1: renormalization points

for loop for transition from photon to hadrons

- \hookrightarrow renormalization point should be in reasonable range
 - for loop in Bethe-Salpeter equation (rescattering, final-state interaction)

 → renormalization point fixed (cf. Lutz/Kolomeitsev, Nucl. Phys. A 730, 392 (2004);

Hyodo/Jido/Hosaka, Phys. Rev. C 78, 025203 (2008))

wrong choice introduces preformed state through backdoor

Pion form-factor in scenario 1

- resonance only for renormalization points in TeV range (same finding: Oller/Oset, Phys. Rev. D 60, 074023 (1999))
- no resonance for reasonable renormalization points

Scenario 2: in addition elementary resonance

 additional parameters: resonance parameters: mass and couplings to 2-π and γ*

Pion form-factor in scenario 2

- excellent description
- no two-peak structure since pion contact-interaction weak

Nature of resonances II: *a*₁ meson

- experimental finding (Dalitz plots): isovector–axial-vector current couples to π-ρ
- π - ρ system subject to final-state interactions (rescattering)
- experimental finding: resonant structure at \approx 1250 MeV
- → study two scenarios:
 - 1. only final-state interaction between π - ρ (cf. Lutz/Kolomeitsev, Nucl. Phys. A 730, 392 (2004); Roca/Oset/Singh, Phys. Rev. D 72, 014002 (2005))
 - 2. include in addition preformed resonance (quark-antiquark)
 - describe final-state interactions via Bethe-Salpeter eq., kernel from lowest-order chiral interaction (Weinberg-Tomozawa — WT)
 → parameter free

Summary 000000

Scenario 1: only final-state interaction

parameters in scenario 1: renormalization points

• for loop for transition from *W* to hadrons

- \hookrightarrow renormalization point should be in reasonable range
 - for loop in Bethe-Salpeter equation (rescattering, final-state interaction)

 \hookrightarrow renormalization point fixed, wrong choice introduces preformed state through backdoor $\ _{\supset}$

au decay in scenario 1

- reasonable description with one free parameter
- → indicates that a_1 is ρ - π "molecule" (Markus Wagner and S.L., Phys. Rev. D 78, 053001 (2008))

Scenario 2: in addition elementary resonance

additional parameters:

resonance parameters: mass and couplings to ρ - π and W

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

au decay in scenario 2

- try to minimize WT, but still typically double-peak structure
- only with unnatural fine tuning one gets one peak (Markus Wagner and S.L., Phys. Rev. D 78, 053001 (2008))

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

results suggest:

vector channel:

- π - π final-state interaction weak
- ρ meson is dominantly preformed state (quark-antiquark)

axial-vector channel:

- π - ρ final-state interaction strong
- a_1 meson is dynamically generated (π - ρ molecule)

Nature of Resonances

Summary 000000

Backup: tau decay into three pions

couplings fixed in lowest order by χSB

couplings fixed in lowest order from ρ decays and χSB

backscattering fixed in lowest order by χ SB (WT)

one free parameter: regulator of loop $\hat{=}$ counter term from vertex $W \rho \pi$ (higher-order term)

・ロット (雪) (日) (日)

tau decay into three pions - processes II

alternative scenario: include in addition

at least three additional parameters: mass of a_1 , coupling $W a_1$, coupling $a_1 \rho \pi$ Chiral Symmetry Breaking

Nature of Resonances

Summary

axial-vector channel: inclusion of higher-order terms in rescattering kernel

tau decay — only tree level

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへの

Summary 00000

- 31

decay channel $au \to K \, \overline{K} \, \pi \, \nu_{ au}$

- coupled-channel calculation includes besides πρ also K* K̄, K K̄*
- \hookrightarrow can also study axial-vector part of $K \bar{K}^* \to K \bar{K} \pi$

(Markus Wagner and S.L., Phys. Lett. B 670, 22 (2008)),