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γ*ΔΔ form factors 
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In terms of the covariant vertex functions a1, a2, c1 and c2 
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Δ transverse charge densities   

Consider a frame where the Δ’s have large momentum along (p+p’)/2 taken to be 
the z-axis.  
In addition take the baryon light-front + component of q, q+=0 so that the virtual 
photon has a transverse momentum in the xy-plane 

     

    virtual photon only couples to forward moving partons 

  EM current j+(0) has the interpretation of a charge density operator:   
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Δ transverse charge densities  

Δ charge densities with transverse spin: 
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ELECTRIC QUADRUPOLE MOMENT 
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For a spin-3/2 particle without internal structure: GM1(0)=3eΔ and GE2(0)= - 3eΔ 

 Q3/2 =0   

3d-charge distribution with spin along x-axis 
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HADRON MASSES AND FORM FACTORS ON THE LATTICE 

•  Masses: two-point functions:   t2 t0 

•  Form factors, GPDS: three-point functions: 

t1 t2 t0 

e.g. O for EM is !

Form factors provide information about the size, magnetization, deformation, density 
distributions of hadrons. 

 Use lattice to predict Δ form factors – provide input for experiment and phenomenology 

〈G(t2, t1;p ′,p; Γν)〉 =
∑

x2, x1

e−ip ′·x2e+i(p ′−p)·x1 Γν〈J(x2, t2)O(x1, t1)J̄(x0, 0)〉



 Create from vacuum the 
correct hadron state: J+|Ω> 

   <Ω|JΔ|Δ> = ZΔuτ(p,s) 

Apply gauge invariant smearing on creation operators to improve ground 
state dominance 

J∆+(x) =
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3
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]
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For Δ+: 

HADRON MATRIX ELEMENTS ON THE LATTICE 

q =p’-p 

G(x2;0) 

G(x1;0) G(x2;x1) Σ
x1, x2 

e-ip’.x2 eiq.x1 

all-to-all 
propagator 

Δ(p) 

Disconnected diagram is not included   calculate 
isovector form factors 

where uτ(p,s) is a Schwinger-Rarita spinor::  - each vector satisfies the Dirac equation     
                 - and  γµuµ(p, s) = 0, pµuµ(p, s) = 0
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α 1      + 

repeat n-times 

SMEARING 

nucleon 

α and n fixed by optimizing 
overlap with nucleon  

am
ef

f(t
) 

n and α smearing 
parameters optimized for 
the proton  



LATTICE ACTION 

•  NF=0 Wilson fermions – a fast way to check the setup on a large, fine lattice 

•  NF=2 Wilson fermions  

•  NF=2+1 hybrid action for lightest pion mass ~350 MeV 



HYBRID ACTION 

Improved NF=2+1 staggered  quarks  

•  Fast to simulate and provided by the MILC collaboration 

•  Gauge configurations with NF=2+1  can be downloaded with smallest mass  
~300 MeV on (2.5 fm)3 and (3.5 fm)3 volumes 

•  Spectroscopy is however complicated by the four tastes 

Domain wall valence fermions  

•  Introduction of a fifth-dimension L5 

•  Preserve chiral symmetry even for finite lattice spacing if L5 infinity 

•  Tune L5 so that the explicit symmetry breaking is small  residual mass in the 
Ward-Takahashi identity is below 10% the quark mass 

•  Tune the light quark mass to reproduce the Goldstone pion mass obtained 
with staggered quarks 

• Tune the strange quark mass using the NF=3 simulation and the Goldstone 
pseudoscalar mass   

Ph. Hägler et al., Phys. Rev. D 78 2008 



NUCLEON AND DELTA MASS 

Nucleon 

    Δ 

mπ=355 MeV mπ=494 MeV mπ=596 MeV 

meff(t)=-log[C(t+1)/C(t)] m    in the large t-limit  when C(t) Ae-mt 



RATIOS 

The exponential time dependence and unknown overlaps of the interpolating fields 
with the physical states cancel by dividing the three-point function with appropriate 
combinations of two-point functions 

e.g. 
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Plateau: yields <h|O|h’> 



PLATEAUS 

Hydrid  for pion 
mass ~350 MeV  
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EVALUATION OF 3-POINT FUNCTION 
Fixed sink 
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 Δ interpolating field is built into the backward sequential propagator with the summation 
over x2 and then combine with a photon of any momentum. The final summation over x1 is 
done as the last step. 
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Depends on the quantum numbers of the Δ 
interpolating field i.e. spin index and projection 
matrices   requires an inversion for each choice 

Important to select the appropriate combinations for Δ interpolating field 

Δ(p) 



Δ ELECTROMAGNETIC FORM FACTORS 

The goal is to extract  GE0, GM1,  the dominant form factors but also the subdominant GE2 
connected to an intrinsic Δ quadrupole moment.  Determination of  GM3  is a bonus.   

Choose suitable sink combination since for each a sequential inversion is required: 

Example: to isolate GM1 one can calculate 

 But there is only contribution for µ=3 and momenta in x & y directions    
  
Π1µ2 (Γ

4 , q) = A q1 − q2( )δµ ,3GM1
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With three inversions we get  GE0, GM1, GE2 optimally 



SIMULTANEOUS OVERCONSTRAINED ANALYSIS 

In our analysis  all the lattice momentum vectors contributing to  a given Q2 are 
taken  in to account. The overdetermined set of equations to be solved  are: 
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transition matrix 
elements 

If the  number the of current directions µ and the 
number  of momentum vectors  contributing to a 
given Q2  is N  then  A  is an  Nx4 matrix 

We  solve for the form  factors  by minimizing χ2 
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using the singular value decomposition of A. 



DOMINANT FORM FACTORS 

Exponential fits Dipole fits 

 C.  A., T. Korzec, G. Koutsou,G. Koutsou, C. Lorec, J. W. Negele, V. Pascalutsa, A. Tsapalis,  M. Vanderhaeghen, 
PRD79:014507(2009)  



MAGNETIC MOMENT 

NLO relativistic chiral effective field theory in δ-expansion:    
                (mΔ-mN) /Λ counts as one power of δ; (mπ/Λ) counts as two powers of δ  

•  Only an overall constant is fitted 

•  The error band is an estimate of 
the uncertainty in the chiral 
expansion  

   talk by Pascalutsa 16:55 WG2 

V. Pascalutsa and  M. Vanderhaeghen, PRL 94 (2005) 

Background field method, C. Aubin 
et al., PRD 79  

Magnetic moment using the background field method:  

Constant magnetic field , NF=2+1 dynamical Clover fermions 

Measure change in mass 



Δ ELECTRIC QUADRUPOLE FORM FACTOR  

Exponential fits 

Also P. Moran et al. [Adelaide], quenched results 

GM3 consistent with zero 



QUARK CHARGE DENSITIES 

Quark transverse charge densities  in Δ+ polarized along the x-axis extracted from lattice 
data  

ρΔ Τ3/2 ρΔ Τ1/2 

Cyprus-MIT/Mainz 

 C.A., T. Korzec, G. Koutsou, C. Lorce, J.W. Negele, V. Pascalutsa, A. Tsapalis, M. Vanderhaeghe, NPA825, 115 (2009)  

Δ with spin projection 3/2 elongated along spin axis 

Δ with spin projection ½ elongated perpendicular to spin axis 



CONCLUSIONS 

•  Improved techniques can yield the subdominant form factors: 

                the Δ electric quadrupole is non-zero 

                Can use input from lattice to evaluate the transverse density   
 distribution  well defined in the infinite momentum frame 

                                      Δ in +3/2 projection prolate 

•  Calculation of axial form factors requires no new inversions – will yield the 
Δ axial coupling 





SPIN-3/2 POINT PARTICLE 

L = ψ̄µ γµνα(i∂α − eAα) ψν −m ψ̄µγµνψν + em−1 ψ̄µ ( iκ1F
µν − κ2γ5F̃

µν ) ψν

γµν =
1
2
[γµ, γν ], γµνα =

1
2
{γµν , γα}

Fµν = ∂µAν − ∂νAµ,

F̃µν = εµνρα∂ρAα

It describes a spin-3/2 particle via the Rarita-Schwinger field ψν  with mass m 
coupled to the electromagnetic field Aµ via the minimal coupling and two non-
minimal couplings κ1 and κ2 

Adding gravity in a supersymmetric way to cure pathologies, constrains the non-
minimal couplings: 

               κ1=κ2=1 

and gives 
GE0(0) = 1, GM1(0) = 3, GE2(0) = −3, GM3(0) = −1


