Δ (1232) FORM FACTORS AND TRANSVERSE DENSITY distributions from lattice QCD

C. Alexandrou
University of Cyprus and Cyprus Institute with
T. Korzec, G. Koutsou, C. Lorcé, J. W. Negele, V. Pascalutsa, A. Tsapalis and M. Vanderhaeghen
NPA825, 115 (2009) \& PRD79, 014507 (2009)
Chiral Dynamics
Bern, 5-10 July 2009

Outline

- Introduction
- Density distributions in the infinite momentum frame
- Lattice evaluation of Δ electromagnetic form factors
- Results
- Conclusions

$\gamma^{*} \Delta \Delta$ form factors

$\left\langle\Delta\left(p^{\prime}, \lambda^{\prime}\right)\right| J^{\mu}(0)|\Delta(p, \lambda)\rangle=-\bar{u}_{\alpha}\left(p^{\prime}, \lambda^{\prime}\right)\left\{\left[F_{1}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{3}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \gamma^{\mu}\right.$

At $Q^{2}=0$

$$
\left.+\left[F_{2}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{4}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{\Delta}}\right\} u_{\beta}(p, \lambda)
$$

$$
G_{E 0}=\left(F_{1}^{*}-\tau F_{2}^{*}\right)+\frac{2}{3} \tau G_{E 2}
$$

$$
G_{E 2}=\left(F_{1}^{*}-\tau F_{2}^{*}\right)-\frac{1}{2}(1+\tau)\left(F_{3}^{*}-\tau F_{4}^{*}\right)
$$

$$
G_{M 1}=\left(F_{1}^{*}+F_{2}^{*}\right)+\frac{4}{5} \tau G_{M 3}
$$

$$
G_{M 3}=\left(F_{1}^{*}+F_{2}^{*}\right)-\frac{1}{2}(1+\tau)\left(F_{3}^{*}+F_{4}^{*}\right)
$$

$$
\begin{aligned}
e_{\Delta} & =G_{E 0}(0)=F_{1}^{*}(0) \\
\mu_{\Delta} & =\frac{e}{2 M_{\Delta}} G_{M 1}(0)=\frac{e}{2 M_{\Delta}}\left[e_{\Delta}+F_{2}^{*}(0)\right] \\
Q_{\Delta} & =\frac{e}{M_{\Delta}^{2}} G_{E 2}(0)=\frac{e}{M_{\Delta}^{2}}\left[e_{\Delta}-\frac{1}{2} F_{3}^{*}(0)\right] \\
O_{\Delta} & =\frac{e}{2 M_{\Delta}^{3}} G_{M 3}(0)=\frac{e}{2 M_{\Delta}^{3}}\left[e_{\Delta}+F_{2}^{*}(0)-\frac{1}{2}\left(F_{3}^{*}(0)+F_{4}^{*}(0)\right)\right] .
\end{aligned}
$$

In terms of the covariant vertex functions a_{1}, a_{2}, c_{1} and c_{2}

Δ transverse charge densities

Consider a frame where the Δ 's have large momentum along $(p+p) / 2$ taken to be the \mathbf{z}-axis.
In addition take the baryon light-front + component of $\mathrm{q}, \mathrm{q}^{+}=\mathbf{0}$ so that the virtual photon has a transverse momentum in the xy -plane
$\rightarrow q^{2}=\vec{q}_{\perp}^{2}=-Q^{2}$
\rightarrow virtual photon only couples to forward moving partons
\rightarrow EM current $\mathrm{j}^{+}(0)$ has the interpretation of a charge density operator: $\bar{\psi} \gamma^{+} \psi \propto\left|\gamma^{+} \psi\right|^{2}$

$$
\begin{aligned}
\rho_{\lambda}^{\Delta}(b) & \equiv \int \frac{d^{2} \vec{q}_{\perp}}{(2 \pi)^{2}} e^{-i \vec{q}_{\perp} \cdot \vec{b}} \frac{1}{2 P^{+}}\left\langle P^{+}, \frac{\vec{q}_{\perp}}{2}, \lambda\right| J^{+}\left|P^{+}, \frac{-\vec{q}_{\perp}}{2}, \lambda\right\rangle \\
& =\int_{0}^{\infty} \frac{d Q}{2 \pi} Q J_{0}(Q b) A_{\lambda \lambda}\left(Q^{2}\right) .
\end{aligned}
$$

two independent quark densities, $\lambda=3 / 2 \& 1 / 2$

> defined in terms of the form factors F^{*}

Δ transverse charge densities

Δ charge densities with transverse spin:

$$
\begin{aligned}
& \rho_{T s_{\perp}}^{\Delta}(\vec{b}) \equiv \int \frac{d^{2} \vec{q}_{\perp}}{(2 \pi)^{2}} e^{-i \vec{q}_{\perp} \cdot \vec{b}} \frac{1}{2 P^{+}}\left\langle P^{+}, \frac{\vec{q}_{\perp}}{2}, s_{\perp}\right| J^{+}(0)\left|P^{+},-\frac{\vec{q}_{\perp}}{2}, s_{\perp}\right\rangle . \\
& \rho_{T \frac{3}{2}}^{\Delta}(\vec{b})=\int_{0}^{+\infty} \frac{d Q}{2 \pi} Q \quad {\left[J_{0}(Q b) \frac{1}{4}\left(A_{\frac{3}{2} \frac{3}{2}}+3 A_{\frac{1}{2} \frac{1}{2}}\right)\right.} \\
&-\sin \left(\phi_{b}-\phi\right) J_{1}(Q b) \frac{1}{4}\left(2 \sqrt{3} A_{\frac{3}{2} \frac{1}{2}}+3 A_{\frac{1}{2}-\frac{1}{2}}\right) \\
&-\cos \left[2\left(\phi_{b}-\phi\right)\right] J_{2}(Q b) \frac{\sqrt{3}}{2} A_{\frac{3}{2}-\frac{1}{2}} \\
&\left.+\sin \left[3\left(\phi_{b}-\phi\right)\right] J_{3}(Q b) \frac{1}{4} A_{\frac{3}{2}-\frac{3}{2}}\right],
\end{aligned}
$$

With a corresponding expression for $\rho_{T \frac{1}{2}}^{\Delta}(\vec{b})$

Electric quadrupole moment

if $\quad \vec{S}_{\perp}=\hat{e}_{x} \quad Q_{s_{\perp}}^{\Delta} \equiv e \int d^{2} \vec{b}\left(b_{x}^{2}-b_{y}^{2}\right) \rho_{T s_{\perp}}^{\Delta}(\vec{b})$
$\Longrightarrow Q_{\frac{3}{2}}^{\Delta}=-Q_{\frac{1}{2}}^{\Delta}=\frac{1}{2}\left\{2\left[G_{M 1}(0)-3 e_{\Delta}\right]+\left[G_{E 2}(0)+3 e_{\Delta}\right]\right\}\left(\frac{e}{M_{\Delta}^{2}}\right)$
For a spin-3/2 particle without internal structure: $G_{M 1}(0)=3 e_{\Delta}$ and $G_{E 2}(0)=-3 e_{\Delta}$
$\rightarrow Q_{3 / 2}=0$

3d-charge distribution with spin along x-axis

$$
Q_{3 d} \equiv \int d x d y d z\left(3 x^{2}-r^{2}\right) \rho_{3 d}(x, y, z)
$$

$$
\begin{aligned}
Q_{3 d} & =2 \int d x d y d z\left(x^{2}-y^{2}\right) \rho_{3 d}(x, y, z) \\
\longrightarrow \rho_{2 d}(x, y) & =\int d z \rho_{3 d}(x, y, z)
\end{aligned}
$$

with $Q_{2 d} \equiv \int d x d y\left(x^{2}-y^{2}\right) \rho_{2 d}(x, y) \longrightarrow \mathbf{Q}_{3 \mathrm{~d}}=2 \mathbf{Q}_{2 \mathrm{~d}}$

Hadron masses and Form factors on the lattice

- Masses: two-point functions: $G\left(\Gamma^{\nu}, \mathbf{p}, t\right)=\sum_{\mathbf{x}_{\mathbf{2}}} e^{-i \mathbf{x}_{2} \cdot \mathbf{p}} \Gamma^{\nu}\left\langle J\left(\mathbf{x}_{2}, t_{2}\right) \bar{J}\left(\mathbf{x}_{0}, t_{0}\right)\right\rangle$

- Form factors, GPDS: three-point functions:
$\left\langle G\left(t_{2}, t_{1} ; \mathbf{p}^{\prime}, \mathbf{p} ; \Gamma^{\nu}\right)\right\rangle=\sum_{\mathbf{x}_{2}, \mathbf{x}_{1}} e^{-i \mathbf{p}^{\prime} \cdot \mathbf{x}_{2}} e^{+i\left(\mathbf{p}^{\prime}-\mathbf{p}\right) \cdot \mathbf{x}_{1}} \Gamma^{\nu}\left\langle J\left(\mathbf{x}_{2}, t_{2}\right) \mathcal{O}\left(\mathbf{x}_{1}, t_{1}\right) \bar{J}\left(\mathbf{x}_{0}, 0\right)\right\rangle$
e.g. \mathcal{O} for EM is

$$
V_{\mu}(x)=\sum_{f} q_{f} \bar{\psi}^{f}(x) \gamma_{\mu} \psi(x)^{f}
$$

Form factors provide information about the size, magnetization, deformation, density distributions of hadrons.
\rightarrow Use lattice to predict Δ form factors - provide input for experiment and phenomenology

Create from vacuum the correct hadron state: $\mathrm{J}^{+} \mid \Omega>$

$$
<\Omega\left|J_{\Delta}\right| \Delta>=Z_{\Delta} u_{T}(p, s)
$$

where $\mathbf{u}_{\mathbf{T}}(\mathbf{p}, \mathbf{s})$ is a Schwinger-Rarita spinor:: - each vector satisfies the Dirac equation

- and $\gamma_{\mu} u^{\mu}(p, s)=0, \quad p_{\mu} u^{\mu}(p, s)=0$

Disconnected diagram is not included \rightarrow calculate isovector form factors

For $\Delta^{+}: \quad J_{\Delta+}(x)=\frac{1}{\sqrt{3}} \epsilon^{a b c}\left\{\left[2 \mathbf{u}^{a T}(x) \mathcal{C} \gamma_{\tau} \mathbf{d}^{b}(x)\right] \mathbf{u}^{c}(x)+\left[\mathbf{u}^{a T}(x) \mathcal{C} \gamma_{\tau} \mathbf{u}^{b}(x)\right] \mathbf{d}^{c}(x)\right\}$
Apply gauge invariant smearing on creation operators to improve ground state dominance

SmeAring

Instead of local source use

$$
d^{\mathrm{smear}}(\mathbf{x}, t)=\sum_{\mathbf{z}} F(\mathbf{x}, \mathbf{z} ; U(t)) d(\mathbf{z}, t)
$$

e.g. Wuppertal smearing

The gauge invariant smearing function can be constructed
 from the hopping matrix H :

$$
F(\mathbf{x}, \mathbf{z} ; U(t))=(1+\alpha H)^{n}(\mathbf{x}, \mathbf{z} ; U(t)) \quad \mathbf{n} \text { and } \alpha \text { smearing }
$$

$$
H(\mathbf{x}, \mathbf{z} ; U(t))=\Sigma_{j=1}^{3}\left(U_{j}(\mathbf{x}) \delta_{\mathbf{x}, \mathbf{z}-\hat{j}}+U_{j}^{\dagger}(\mathbf{x}-\hat{j}, t) \delta_{\mathbf{x}, \mathbf{z}+\hat{j}}\right)
$$

with optimisation parameters α and n.
 parameters optimized for the proton

α and n fixed by optimizing overlap with nucleon

LATtice Action

- $\mathrm{N}_{\mathrm{F}}=0$ Wilson fermions - a fast way to check the setup on a large, fine lattice
- $\mathrm{N}_{\mathrm{F}}=2$ Wilson fermions
- $\mathrm{N}_{\mathrm{F}}=2+1$ hybrid action for lightest pion mass $\sim 350 \mathrm{MeV}$

Hybrid action

Improved $\mathbf{N}_{\mathrm{F}}=\mathbf{2 + 1}$ staggered quarks

- Fast to simulate and provided by the MILC collaboration
- Gauge configurations with $\mathrm{N}_{\mathrm{F}}=2+1$ can be downloaded with smallest mass $\sim 300 \mathrm{MeV}$ on $(2.5 \mathrm{fm})^{3}$ and $(3.5 \mathrm{fm})^{3}$ volumes
- Spectroscopy is however complicated by the four tastes

Domain wall valence fermions

- Introduction of a fifth-dimension L_{5}
- Preserve chiral symmetry even for finite lattice spacing if $L_{5} \rightarrow$ infinity
- Tune L_{5} so that the explicit symmetry breaking is small \rightarrow residual mass in the Ward-Takahashi identity is below 10\% the quark mass
- Tune the light quark mass to reproduce the Goldstone pion mass obtained with staggered quarks
-Tune the strange quark mass using the $\mathrm{N}_{\mathrm{F}}=3$ simulation and the Goldstone pseudoscalar mass

Nucleon and Delta mass
Nucleon

$m_{\text {eff }}(t)=-\log [C(t+1) / C(t)] \rightarrow m \quad$ in the large $t-l i m i t$ when $C(t) \rightarrow A e^{-m t}$

Ratios

The exponential time dependence and unknown overlaps of the interpolating fields with the physical states cancel by dividing the three-point function with appropriate combinations of two-point functions
e.g.

$$
R=\frac{G^{h \mathcal{O} h^{\prime}}\left(t_{2}, t_{1} ; \vec{q}\right)}{\sqrt{G^{h}\left(2\left(t_{2}-t_{1}\right) ; \overrightarrow{0}\right) G^{h^{\prime}}\left(2 t_{1} ; \vec{q}\right)}} \xrightarrow{t_{1} \gg 1, t_{2}-t_{1} \gg 1}\langle h| \mathcal{O}\left|h^{\prime}\right\rangle
$$

Smearing enhances ground state

Optimize R so that two point functions with the shortest possible time separation are involved \rightarrow less noisy signal
$R_{\sigma \mu \tau}\left(\Gamma, \vec{q}, t_{2}, t_{1}\right)=\frac{G_{\sigma \mu \tau}\left(\Gamma, \vec{q}, t_{1}\right)}{G_{k k}\left(\Gamma^{4}, \overrightarrow{0}, t_{2}\right)} \sqrt{\frac{G_{k k}\left(\Gamma^{4}, \vec{p}_{i}, t_{2}-t_{1}\right) G_{k k}\left(\Gamma^{4}, \overrightarrow{0}, t_{1}\right) G_{k k}\left(\Gamma^{4}, \overrightarrow{0}, t_{2}\right)}{G_{k k}\left(\Gamma^{4}, \overrightarrow{0}, t_{2}-t_{1}\right) G_{k k}\left(\Gamma^{4}, \vec{p}_{i}, t_{1}\right) G_{k k}\left(\Gamma^{4}, \vec{p}_{i}, t_{2}\right)}}$ $t_{2}-t_{2} \gg 1, t_{1} \gg 1 \quad \Pi_{\sigma \mu \tau}(\Gamma, \tilde{\mathbf{q}})$

Plateau: yields <h|O्O|h’> $\quad \Gamma_{i}=\frac{1}{2}\left(\begin{array}{cc}\sigma_{i} & 0 \\ 0 & 0\end{array}\right), \quad \Gamma_{4}=\frac{1}{2}\left(\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right)$

Plateaus

Hydrid for pion mass ~350 MeV

Evaluation of 3-point function

Fixed sink

$$
D\left(y_{1} ; y_{2}\right) v\left(y_{2}\right)=b\left(y_{1}\right) \quad \rightarrow \quad v\left(y_{1}\right)=D^{-1}\left(y_{1} ; y_{2}\right) b\left(y_{2}\right)
$$

If we take: $\quad b\left(y_{2}\right)=\delta_{y_{2}, 0} \quad \rightarrow \quad v\left(y_{1}\right)=D^{-1}\left(y_{1} ; 0\right)=G\left(y_{1} ; 0\right) \quad \begin{aligned} & y_{1} \text { takes values } \\ & \text { over all lattice }\end{aligned}$ sites
If we take: $\quad \boldsymbol{b}\left(y_{2} ; \mathfrak{J}_{\alpha}\right)=\boldsymbol{G}\left(x_{2} ; 0\right) G\left(x_{2} ; 0\right) \delta_{t, t} \mathfrak{J}_{\alpha}$

Δ interpolating field is built into the backward sequential propagator with the summation over x_{2} and then combine with a photon of any momentum. The final summation over x_{1} is done as the last step.

Important to select the appropriate combinations for Δ interpolating field

Δ ELECTROMAGNETIC FORM FACTORS

The goal is to extract $\mathrm{G}_{\mathrm{E} 0}, \mathrm{G}_{\mathrm{M} 1}$, the dominant form factors but also the subdominant $\mathrm{G}_{\mathrm{E} 2}$ connected to an intrinsic Δ quadrupole moment. Determination of $G_{M 3}$ is a bonus.

Choose suitable sink combination since for each a sequential inversion is required:
Example: to isolate $\mathrm{G}_{\mathrm{M} 1}$ one can calculate $\quad \Pi_{1 \mu 2}\left(\Gamma^{4}, \vec{q}\right)=\mathcal{A}\left(q_{1}-q_{2}\right) \delta_{\mu, 3} G_{M 1}$
\rightarrow But there is only contribution for $\mu=3$ and momenta in $\mathrm{x} \& \mathrm{y}$ directions

Better to choose:

$$
\begin{gathered}
\sum_{j, k, l=1}^{3} \epsilon_{j k l} \Pi_{j \mu k}\left(\Gamma^{4}, \vec{q}\right)=\mathcal{A} G_{M 1}\left[\delta_{1, \mu}\left(q_{3}-q_{2}\right)+\delta_{2, \mu}\left(q_{1}-q_{3}\right)+\delta_{3, \mu}\left(q_{2}-q_{1}\right)\right] \\
\text { this is built into the } \Delta \text { - sink and }
\end{gathered}
$$ requires one inversion

Other optimal combinations:

$$
\sum_{k=1}^{3} \Pi_{k \mu k}\left(\Gamma^{4}, \vec{q}\right) \Longrightarrow G_{E 0}, G_{E 2}
$$

$$
\sum_{j, k, l=1}^{3} \epsilon_{j k l} \Pi_{j n k}\left(\Gamma^{j}, \vec{q}\right) \Longrightarrow G_{M 1}, G_{E 2}, G_{M 3} \quad \text { and } \quad \sum_{\mathbf{j}, \mathbf{k}, l=1}^{3} \epsilon_{\mathrm{jkl}} \Pi_{\mathrm{j} 4 \mathrm{k}}\left(\Gamma^{\mathbf{j}}, \tilde{\mathbf{q}}\right) \Longrightarrow G_{E 2}
$$

With three inversions we get $G_{E 0}, G_{M 1}, G_{E 2}$ optimally

Simultaneous overconstrained analysis

In our analysis all the lattice momentum vectors contributing to a given Q^{2} are taken in to account. The overdetermined set of equations to be solved are:

Lattice measurements of the transition matrix elements
If the number the of current directions μ and the number of momentum vectors contributing to a given Q^{2} is N then A is an Nx 4 matrix

We solve for the form factors by minimizing x^{2}

$$
\chi^{2}=\sum_{k=1}^{N}\left(\frac{\sum_{j=1}^{4} A_{k j} F_{j}-S_{k}}{\sigma_{k}}\right)^{2}
$$

using the singular value decomposition of A.

DOMINANT FORM FACTORS

C. A., T. Korzec, G. Koutsou,G. Koutsou, C. Lorec, J. W. Negele, V. Pascalutsa, A. Tsapalis, M. Vanderhaeghen, PRD79:014507(2009)

MAGNETIC MOMENT

NLO relativistic chiral effective field theory in δ-expansion:
$\left(m_{\Delta}-m_{N}\right) / \Lambda$ counts as one power of $\delta ;\left(m_{\pi} / \Lambda\right)$ counts as two powers of δ
V. Pascalutsa and M. Vanderhaeghen, PRL 94 (2005)

- Only an overall constant is fitted
- The error band is an estimate of the uncertainty in the chiral expansion
\rightarrow talk by Pascalutsa 16:55 WG2

Magnetic moment using the background field method:
Constant magnetic field, $\mathbf{N}_{\mathrm{F}}=\mathbf{2 + 1}$ dynamical Clover fermions
Measure change in mass

Δ ELECTRIC QUADRUPOLE FORM FACTOR

$\mathrm{G}_{\mathrm{M} 3}$ consistent with zero

Also P. Moran et al. [Adelaide], quenched results

Quark charge densities

Quark transverse charge densities in Δ^{+}polarized along the x-axis extracted from lattice data

Δ with spin projection $3 / 2$ elongated along spin axis
Δ with spin projection $1 / 2$ elongated perpendicular to spin axis

Conclusions

- Improved techniques can yield the subdominant form factors:
\rightarrow the Δ electric quadrupole is non-zero
Can use input from lattice to evaluate the transverse density distribution \rightarrow well defined in the infinite momentum frame
$\rightarrow \Delta$ in $+3 / 2$ projection prolate
- Calculation of axial form factors requires no new inversions - will yield the Δ axial coupling

THANK YOU FOR YOUR ATTENTION

SPIN-3/2 POINT PARTICLE

$$
\begin{aligned}
\mathcal{L} & =\bar{\psi}_{\mu} \gamma^{\mu \nu \alpha}\left(i \partial_{\alpha}-e A_{\alpha}\right) \psi_{\nu}-m \bar{\psi}_{\mu} \gamma^{\mu \nu} \psi_{\nu}+e m^{-1} \bar{\psi}_{\mu}\left(i \kappa_{1} F^{\mu \nu}-\kappa_{2} \gamma_{5} \tilde{F}^{\mu \nu}\right) \psi_{\nu} \\
\gamma^{\mu \nu} & =\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right], \quad \gamma^{\mu \nu \alpha}=\frac{1}{2}\left\{\gamma^{\mu \nu}, \gamma^{\alpha}\right\} \\
F^{\mu \nu} & =\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}, \\
\tilde{F}^{\mu \nu} & =\epsilon^{\mu \nu \rho \alpha} \partial_{\rho} A_{\alpha}
\end{aligned}
$$

It describes a spin-3/2 particle via the Rarita-Schwinger field Ψ_{v} with mass m coupled to the electromagnetic field A_{μ} via the minimal coupling and two nonminimal couplings K_{1} and K_{2}
Adding gravity in a supersymmetric way to cure pathologies, constrains the nonminimal couplings:

$$
\mathrm{K}_{1}=\mathrm{K}_{2}=1
$$

and gives

$$
\mathrm{G}_{\mathrm{E} 0}(0)=1, \quad \mathrm{G}_{\mathrm{M} 1}(0)=3, \quad \mathrm{G}_{\mathrm{E} 2}(0)=-3, \quad \mathrm{G}_{\mathrm{M} 3}(0)=-1
$$

