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vy AA form factors
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In terms of the covariant vertex functions a,, a,, ¢, and c,

F',=a,+a,, F,=-a,, F;=c,+c,, F,=-c, these is what we compute on the lattice



A transverse charge densities

Consider a frame where the A’s have large momentum along (p+p’)/2 taken to be
the z-axis.

In addition take the baryon light-front + component of q, q*=0 so that the virtual
photon has a transverse momentum in the xy-plane

- virtual photon only couples to forward moving partons
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A transverse charge densities

A charge densities with transverse spin:
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ELECTRIC QUADRUPOLE MOMENT

—.
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For a spin-3/2 particle without internal structure: G,,(0)=3e, and Gg,(0)= - 3e,
> Q;, =0

3d-charge distribution with spin along x-axis
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if invariant around x-axis
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HADRON MASSES AND FORM FACTORS ON THE LATTICE

* Masses: two-point functions: G, p,t) = Ze_iXZ'pF”<J(x2,t2)j(xo,t0)> tQ

X2

* Form factors, GPDS: three-point functions:
(G(ta,t1;p ", piTV)) = Y e P 2etilp —p)x FV<J<X2,t2>0<xl,t1>J<xO,0>>t

X2, X1

e.g. O forEM is Z qrb? (z) v (z)!

Form factors provide information about the size, magnetization, deformation, density
distributions of hadrons.

-> Use lattice to predict A form factors — provide input for experiment and phenomenology



HADRON MATRIX ELEMENTS ON THE LATTICE

all-to-all

propagato\‘ q-=
Z G(x2;X4)
e-ip’.Xz eiq.X1

X4y X, (x2,t2) (0,0) <Q|J,\|A> = Z,u (p,S)
A(p") G(x,;0) A(p)

G(x4;0) Create from vacuum the
correct hadron state: J*|Q>

where u.(p,s) is a Schwinger-Rarita spinor:: - each vector satisfies the Dirac equation
-and y,u"(p,s) =0, p,ut(p,s)=0

Disconnected diagram is not included -> calculate

isovector form factors < >

For A*:  Ja+(x) = ie"’bc{ [2u” (2)Cv,d"(2)] u(z) + [u™" (2)Cyru’(2)] dc(a:)}

"

Apply gauge invariant smearing on creation operators to improve ground
state dominance



SMEARING

Instead of local source use

The gauge invariant smearing function can be constructed

" (x, 1) = X F(x,2 U(1)d(z 1)

e.g. Wuppertal smearing

from the hopping matrix H:

H(x,z U(t))

F(x,zU(t)= (14 aH)"(x,2z;U(l))

- Z?—l( Uj (X)(Sx.z_]: + UJT (X - -;.’ L)(Sx.z-i—j)

with optimisation parameters o and n.
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LATTICE ACTION

* Nc=0 Wilson fermions — a fast way to check the setup on a large, fine lattice
* N.=2 Wilson fermions

* N.=2+1 hybrid action for lightest pion mass ~350 MeV



HYBRID ACTION

Improved N.=2+1 staggered quarks
 Fast to simulate and provided by the MILC collaboration

» Gauge configurations with Nc.=2+1 can be downloaded with smallest mass
~300 MeV on (2.5 fm)3 and (3.5 fm)3 volumes

» Spectroscopy is however complicated by the four tastes

Domain wall valence fermions
* Introduction of a fifth-dimension L;
* Preserve chiral symmetry even for finite lattice spacing if L;=> infinity

* Tune L; so that the explicit symmetry breaking is small - residual mass in the
Ward-Takahashi identity is below 10% the quark mass

* Tune the light quark mass to reproduce the Goldstone pion mass obtained
with staggered quarks

*Tune the strange quark mass using the N=3 simulation and the Goldstone
pseudoscalar mass

Ph. Hagler et al., Phys. Rev. D 78 2008



NUCLEON AND DELTA MASS

Nucleon
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RATIOS

The exponential time dependence and unknown overlaps of the interpolating fields
with the physical states cancel by dividing the three-point function with appropriate
combinations of two-point functions

e.g. Gh@h’(tz,tﬁzi)

R: 2 , t1>>1,t2—tl>>l ><h|(9|h,>
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Smearing enhances ground state
dominance i.e plateau for smaller
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Optimize R so that two point functions with the shortest possible time separation
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EVALUATION OF 3-POINT FUNCTION
Fixed sink

Dy;y,vv,)=bly) — vy )=D'(y;y,)b(y,)
takes values
If we take:  Db(y,)= 5},2’0 = v,)=D(y;0)=G(y,;0) e zller all lattice
sites
If we take: b(y,;J_)=G(x,;0) G(X2;0)5t’t2 J,
- V3 )= Dy,;ix,)G(x,;0)G(x,;0) T,

X

H_/ 2

N\

Depends on the quantum numbers of the A
interpolating field i.e. spin index and projection
matrices - requires an inversion for each choice

(X,0)
A(p’)<_/o A(p)

(X L) (0,0)

A interpolating field is built into the backward sequential propagator with the summation
over X, and then combine with a photon of any momentum. The final summation over x, is
done as the last step.

Important to select the appropriate combinations for A interpolating field



A ELECTROMAGNETIC FORM FACTORS

The goal is to extract G.,, Gy, the dominant form factors but also the subdominant G,
connected to an intrinsic A quadrupole moment. Determination of G,,; is a bonus.

Choose suitable sink combination since for each a sequential inversion is required:

Example: to isolate G,,, one can calculate TI1,,,(I".,§) = A(q, —4,)6,:G,,

- But there is only contribution for y=3 and momenta in x & y directions

== Better to choose:
3

Z ikl Q) = AGur [01,.(03 — @2) + 02,.(q1 — q3) + 93,.(q2 — 1)

k=1
! this is built into the A- sink and
requires one inversion

Other optimal combinations:

3
Z Hkuk‘ (F47 Cj) — GE07 GEQ
k=1

3 3

Z Ejlejnk(Fj>® — Gum1,Gr2, Gz and Z eiklliax (I, q) = Gr
Jkl=1 k=1

www= With three inversions we get G,, G|, Gg, optimally



SIMULTANEOUS OVERCONSTRAINED ANALYSIS

In our analysis all the lattice momentum vectors contributing to a given Q2 are
taken in to account. The overdetermined set of equations to be solved are:

gEO
- - g,
S(q;1)=A(q; ). F(Q?) F=
ng
hd
Lattice
measurements of the
transition matrix If the number the of current directions p and the
elements number of momentum vectors contributing to a

given Q2 is N then A is an Nx4 matrix

We solve for the form factors by minimizing x2
\2

(4
> Ay F;=S,,
j=1

x2=§

k=1 Gk

\ J

using the singular value decomposition of A.



DOMINANT FORM FACTORS
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PRD79:014507(2009)



MAGNETIC MOMENT

NLO relativistic chiral effective field theory in 6-expansion:
(m,-my) /A counts as one power of &; (m_/A) counts as two powers of &

V. Pascalutsa and M. Vanderhaeghen, PRL 94 (2005)

4 T I T T T
A Quenched
3 O N_=2 Wilson
* Hybrid * The error I?ano! is an es_tlmate of
- the uncertainty in the chiral
expansion

- talk by Pascalutsa 16:55 WG2

* Only an overall constant is fitted

My

0 Background field method, C. Aubin
et al., PRD 79

o U 1 1 I I
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Magnetic moment using the background field method:
Constant magnetic field , Nc.=2+1 dynamical Clover fermions

Measure change in mass



A ELECTRIC QUADRUPOLE FORM FACTOR

o m, =681 MeV, dynamical Wilsorr
q me= 508 MeV, dynamical Wilson|
o m_ =384 MeV, dynamical Wilson
m_ =353 MeV, hybrid

I o m, =563 MeV, quenched Wilson
q M= 490 MeV, quenched Wilson,
i o m.= 411 MeV, quenched Wilson]
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Also P. Moran et al. [Adelaide], quenched results
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G,;; consistent with zero



QUARK CHARGE DENSITIES

Quark transverse charge densities in A* polarized along the x-axis extracted from lattice
data
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Cyprus-MIT/Mainz

A with spin projection 3/2 elongated along spin axis

A with spin projection 2 elongated perpendicular to spin axis

C.A,, T. Korzec, G. Koutsou, C. Lorce, J.W. Negele, V. Pascalutsa, A. Tsapalis, M. Vanderhaeghe, NPA825, 115 (2009)



CONCLUSIONS

® Improved techniques can yield the subdominant form factors:
- the A electric quadrupole is non-zero

Can use input from lattice to evaluate the transverse density
distribution - well defined in the infinite momentum frame

- A in +3/2 projection prolate

® Calculation of axial form factors requires no new inversions — will yield the
A axial coupling
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SPIN-3/2 POINT PARTICLE

L = P (i0a — eAn) by —m ", + em ™ U, (ikg FM — Koys FHY ) Yy
v 1 v S

o= 0 = 5t

P = 9rAY — VAP,

F#I/ — euupaapAa

It describes a spin-3/2 particle via the Rarita-Schwinger field yp, with mass m
coupled to the electromagnetic field A, via the minimal coupling and two non-
minimal couplings kK, and k,

Adding gravity in a supersymmetric way to cure pathologies, constrains the non-
minimal couplings:

K,=K,=1
and gives
Ggo(0) =1, GMm1(0) =3, Gg2(0) = -3, Gnms(0) =—1



