Electromagnetic reactions with light nuclei

Daniel Phillips Ohio University and Universität Bonn

Research supported by the US Department of Energy

Plan

- Single-photon processes in the NN system
- Extension to 3N and 4N systems
- Compton scattering in A=2 and 3
- A word on weak processes
- Conclusion

LO QED: electron couples to J_{μ}

E LO QED: electron couples to J_{μ}

\varkappa χ ET: apply counting to J_{μ}

LO QED: electron couples to J_{μ}

 $\sim \chi ET$: apply counting to J_{μ}

LO χ ET, O(e): $J_0(\mathbf{r}) = |e|\delta^{(3)}(r - r_p)$

• Deuteron form factor: $G_C(|\mathbf{q}|) = \int dr \, j_0\left(\frac{|\mathbf{q}|r}{2}\right) \left[u^2(r) + w^2(r)\right]$

q

LO QED: electron couples to J_{μ}

 $\sim \chi ET$: apply counting to J_{μ}

- **LO** χ ET, O(e): $J_0(\mathbf{r}) = |e|\delta^{(3)}(r r_p)$
- Deuteron form factor: $G_C(|\mathbf{q}|) = \int dr \, j_0\left(\frac{|\mathbf{q}|r}{2}\right) \left[u^2(r) + w^2(r)\right]$

q

- Change $Q^2 = -q^2 \Rightarrow$ change spatial resolution
- Prediction of QED and NN force model

Results for Gc and GQ at leading order

DP and Cohen (1999); Pavon Valderrama, Ruiz Arriola, Nogga, DP (2008)

> Nucleon form factors included via:

 $\frac{G_C}{G_E^{(s)}} = \langle \psi | e | \psi \rangle + O(P^2)$

Only |**q**|/2 transferred to relative degree of freedom

Meissner and Walzl (2001); DP (2003, 2007)

Meissner and Walzl (2001); DP (2003, 2007)

Higher orders require corrections to V and J₀
At O(eP³) we can test chiral TPE

Meissner and Walzl (2001); DP (2003, 2007)

Higher orders require corrections to V and J₀
 At O(eP³) we can test chiral TPE
 O(eP²): 1/M² effects

O(eP³): 2B mechanism enters, but no free parameters

()(e

Meissner and Walzl (2001); DP (2003, 2007)

Higher orders require corrections to V and J₀
 At O(eP³) we can test chiral TPE
 O(eP²): 1/M² effects

O(eP³): 2B mechanism enters, but no free parameters

• $O(eP^4)$: Two-pion exchange pieces of J_0 :but =0 for $J_0^{(s)}$

 χET for G_C to O(eP³)[N²LO]

DP (2003, 2007)

 χET for G_C to O(eP³)[N²LO]

DP (2003, 2007)

Good J₀ convergence

G_C insensitive to r~1/Λ physics for |q|<0.6 GeV

 χET for G_c to O(eP³)[N²LO]

DP (2003, 2007)

Good J₀ convergence

G_C insensitive to r~1/Λ physics for |q|<0.6 GeV</p>

G_M: calculation exists, observable sensitive to r~1/Λ once lql≈0.45 GeV≡contact term at O(eP⁴)

Adjust O(eP⁵) contact term to reproduce Q_d: predict ratio up to O(eP⁶) effects

Adjust O(eP⁵) contact term to reproduce Q_d: predict ratio up to O(eP⁶) effects

Adjust O(eP⁵) contact term to reproduce Q_d: predict ratio up to O(eP⁶) effects

 Ratio largely independent of short-distance physics for q<0.6 GeV

Gc/GQ to 3% at q= 0.39 GeV

BLAST data on t20

 $\left(\frac{d\sigma^5}{d\epsilon' d\Omega_e d\Omega_p}\right)_h = \frac{m_p m_n p_p}{8\pi^3 M_d} \sigma_{Mott} f_{rec}^{-1} \left[v_L R_L + v_T R_T + v_T R_T \cos 2\phi_p + v_{LT} R_{LT} \cos \phi_p + h v_{LT'} R_{LT'} \sin \phi_p\right]$

Obtain response functions by measuring angle and helicity dependence of breakup cross section

 $\left(\frac{d\sigma^5}{d\epsilon' d\Omega_e d\Omega_p} \right)_h = \frac{m_p m_n p_p}{8\pi^3 M_d} \sigma_{Mott} f_{rec}^{-1} \left[v_L R_L + v_T R_T + v_T R_T \cos 2\phi_p + v_{LT} R_{LT} \cos \phi_p + h v_{LT'} R_{LT'} \sin \phi_p \right]$

- Obtain response functions by measuring angle and helicity dependence of breakup cross section
- Compare with, e.g. (assumes current conservation) $R_L = |\langle \psi_{\mathbf{p}} | J_0 | d \rangle|^2;$ $R_T = |\langle \psi_{\mathbf{p}} | J_1 | d \rangle|^2 + |\langle \psi_{\mathbf{p}} | J_2 | d \rangle|^2.$

 $\left(\frac{d\sigma^5}{d\epsilon' d\Omega_e d\Omega_p}\right)_h = \frac{m_p m_n p_p}{8\pi^3 M_d} \sigma_{Mott} f_{rec}^{-1} \left[v_L R_L + v_T R_T + v_T R_T \cos 2\phi_p + v_{LT} R_{LT} \cos \phi_p + h v_{LT'} R_{LT'} \sin \phi_p\right]$

- Obtain response functions by measuring angle and helicity dependence of breakup cross section
- Compare with, e.g. (assumes current conservation) $R_L = |\langle \psi_{\mathbf{p}} | J_0 | d \rangle|^2;$ $R_T = |\langle \psi_{\mathbf{p}} | J_1 | d \rangle|^2 + |\langle \psi_{\mathbf{p}} | J_2 | d \rangle|^2.$

Probe NN dynamics as a function of energy and momentum transfer

 \blacksquare J₀ and J both involved, isoscalar and isovector transitions

 \Box J₀ and J both involved, isoscalar and isovector transitions

Current conservation:

$$\langle F|q_{\mu}J^{\mu}|I\rangle = 0 \Rightarrow \langle F|H\rho - \rho H|I\rangle = \langle F|\mathbf{q} \cdot \mathbf{J}|I\rangle \Rightarrow [H, \rho] = \mathbf{q} \cdot \mathbf{J}$$

 \square J₀ and J both involved, isoscalar and isovector transitions

Current conservation:

$$\langle F|q_{\mu}J^{\mu}|I\rangle = 0 \Rightarrow \langle F|H\rho - \rho H|I\rangle = \langle F|\mathbf{q} \cdot \mathbf{J}|I\rangle \Rightarrow [H, \rho] = \mathbf{q} \cdot \mathbf{J}$$

[$H_{0}, \rho^{(1)}$]=**q**.**J**⁽¹⁾ and [V, ρ]=**q**.**J**⁽²⁾

 \square J₀ and J both involved, isoscalar and isovector transitions

Current conservation:

$$\langle F|q_{\mu}J^{\mu}|I\rangle = 0 \Rightarrow \langle F|H\rho - \rho H|I\rangle = \langle F|\mathbf{q} \cdot \mathbf{J}|I\rangle \Rightarrow [H, \rho] = \mathbf{q} \cdot \mathbf{J}$$

[
$$H_0, \rho^{(1)}$$
]=**q**.**J**⁽¹⁾ and [V, ρ]=**q**.**J**⁽²⁾

Need to derive V and J in a consistent framework

 \square J₀ and J both involved, isoscalar and isovector transitions

Current conservation:

$$\langle F|q_{\mu}J^{\mu}|I\rangle = 0 \Rightarrow \langle F|H\rho - \rho H|I\rangle = \langle F|\mathbf{q} \cdot \mathbf{J}|I\rangle \Rightarrow [H, \rho] = \mathbf{q} \cdot \mathbf{J}$$

$$[H_0, \rho^{(1)}] = \mathbf{q} \cdot \mathbf{J}^{(1)} \text{ and } [V, \rho] = \mathbf{q} \cdot \mathbf{J}^{(2)}$$

Need to derive V and J in a consistent framework

Does not determine piece of **J** that is orthogonal to **q**

J to $O(eP^3)$

O(eP): "convection" current ep/M and single-nucleon magnetic-moment operators

- O(eP²): 2B current, constrained by OPE part of V, one-loop correction to nucleon isovector form factor
- O(eP³):1/M² corrections to one-body current, and subleading nucleon-structure effects

J at O(eP⁴)

O(eP⁴): 2B current connected to TPE part of V, also short-distance magnetic operator, and OPE corrections

J at O(eP⁴)

O(eP⁴): 2B current connected to TPE part of V, also short-distance magnetic operator, and OPE corrections

Derived for use in $\vec{n}p \rightarrow d\gamma$ for $\omega \sim |\mathbf{q}| \sim m_{\pi^2}/M$

Park, Min, Rho (1999)

J at O(eP⁴)

O(eP⁴): 2B current connected to TPE part of V, also short-distance magnetic operator, and OPE corrections

+

Derived for use in $\vec{n}p \rightarrow d\gamma$ for $\omega \sim |\mathbf{q}| \sim m_{\pi^2}/M$

Park, Min, Rho (1999)

Re-derived for $\omega - m_{\pi^2}/M$, $|\mathbf{q}| - m_{\pi}$

Pastore et al. PRC 78, 064002 (2009), arXiv:0906.1800; Talk of Stefan Koelling

2

+

Results for A=2
Results for A=2

Pastore et al.: current obeys continuity equation, but inconsistent from renormalization point of view. Also mistakes regarding transverse NN-current operators

Results for A=2

- Pastore et al.: current obeys continuity equation, but inconsistent from renormalization point of view. Also mistakes regarding transverse NN-current operators
- Should fit two undetermined NN operators at O(eP⁴)

Cumulative to:	µd (n.m.)	$M_{np} (fm^{1/2})$
O(eP)	0.8469	393.1
$O(eP^2)$	0.8469	401.8
$O(eP^3)$	0.8400	401.7
O(eP ⁴)=Expt	0.8574	410.2(4)

Power counting sort-of OK, Magnetic LEC natural

Song et al. (2007)

Results for A=2

- Pastore et al.: current obeys continuity equation, but inconsistent from renormalization point of view. Also mistakes regarding transverse NN-current operators
- Should fit two undetermined NN operators at O(eP⁴)

Cumulative to:	µd (n.m.)	$M_{np} (fm^{1/2})$
O(eP)	0.8469	393.1
$O(eP^2)$	0.8469	401.8
$O(eP^3)$	0.8400	401.7
$O(eP^4)=Expt$	0.8574	410.2(4)

Power counting sort-of OK, Magnetic LEC natural Song et al. (2007)
Prediction for ω and Q²-dependence AND for A=3

Open questions and future work

- 1/M pieces: M~ Λ or M~ Λ^2 , irreducibility, formalism?
- Consistent V and J
- Treating nucleon structure?
- Predictions for photo- and electro-disintegration Rozpedzik, Golak
 C.f. Christlmeier, Griesshammer (2008)
 Form-factor extractions
- $\omega \sim m_{\pi}$; Different J; Delta(1232) expected important

Testing currents and forces in A=3, 4

Testing currents and forces in A=3, 4

■ Key point: 3N current operator does not appear until O(eP⁵), and short-distance 3N magnetic operators occur only at O(eP⁷)⇒Predictions

Testing currents and forces in A=3, 4

- Key point: 3N current operator does not appear until O(eP⁵), and short-distance 3N magnetic operators occur only at O(eP⁷)⇒Predictions
- Tri-nucleon magnetic moments

Song, Park, Lazauskas, Min (2007)

Cumulative to:	μ _{H-3} (n.m.)	$\mu_{\text{He-3}}(n.m.)$
O(eP)	2.585	-1.774
$O(eP^2)$	2.790	-1.979
$O(eP^3)$	2.772	-1.986
O(eP ⁴)	3.035(12)	-2.198(12)
Experiment	2.979	-2.128

Note importance of O(eP⁴) contributions, not in SNPA

M1 properties of 3N systems to $O(eP^4)$

Song, Lazauskas, Park (2009)

Threshold nd \rightarrow ty cross section and R_c Experiment: 0.508(15) mb; R_c=-0.420(30) M1 properties of 3N systems to O(eP⁴) Song, Lazauskas, Park (2009) Threshold $nd \rightarrow t\gamma$ cross section and R_c Experiment: 0.508(15) mb; $R_c = -0.420(30)$ INOY Hamiltonian, Λ =500–900 MeV $\sigma_{nd} = 0.279 + 0.044(25) + 0.175(3) \text{ mb}$ eP^2 eP^4 eP Total: $\sigma_{nd}=0.498(3)$ mb; R_c=-0.465.

M1 properties of 3N systems to O(eP⁴) Song, Lazauskas, Park (2009) Threshold $nd \rightarrow t\gamma$ cross section and R_c Experiment: 0.508(15) mb; R_c=-0.420(30) INOY Hamiltonian, Λ =500–900 MeV $\sigma_{nd} = 0.279 + 0.044(25) + 0.175(3) \text{ mb}$ eP^2 eP^4 eP Total: $\sigma_{nd}=0.498(3)$ mb; $R_c=-0.465$. Idaho N3LO + UIX*: $\sigma_{nd}=0.477(3)$ mb; $R_c=-0.468(1)$.

Sensitivity to and^(1/2)

M1 properties of 3N systems to O(eP⁴) Song, Lazauskas, Park (2009) Threshold $nd \rightarrow t\gamma$ cross section and R_c Experiment: 0.508(15) mb; R_c=-0.420(30) INOY Hamiltonian, Λ=500-900 MeV $\sigma_{nd} = 0.279 + 0.044(25) + 0.175(3) \text{ mb}$ eP^2 eP^4 eP Total: $\sigma_{nd}=0.498(3)$ mb; $R_c=-0.465$. Idaho N3LO + UIX*: $\sigma_{nd}=0.477(3)$ mb; $R_c=-0.468(1)$.

Sensitivity to and^(1/2)

EFT(π) to N²LO: $\sigma_{nd}=0.503(3)$ mb; R_c=-0.412

Sadeghi, Bayegan, Griesshammer (2005); Sadeghi (2007)

A=4: capture and photodisintegration

A=4: capture and photodisintegration n³He→⁴Heγ. FY calculation of threshold 4B dynamics + χET current operators: brackets experimental number

 $\sim \chi ET + NCSM + LIT$

Impact of 3NFs in peak region, but only E1 operator

Experimental situation confused

Future work: A=3, 4

Importance of consistent potential and current?

Predictions for ³He photodisintegration

Identify truly "chiral" dynamics: EFT(π) vs χET

 Novel 3NF effects: HIγS γ³He → npp Gao talk
Photodisintegration of ⁴He: clean up data? Shima talk

Electro-disintegration: somewhat untouched in χΕΤ

Goal is to investigate neutron Compton scattering

Goal is to investigate neutron Compton scattering

Ann

But two-body currents are large

Goal is to investigate neutron Compton scattering

But two-body currents are large

Power counting for γd scattering $\omega \sim m_{\pi^2}/M$: χ PT counting for J_{μ} and $W_{\mu\nu}$

Power counting for γd scattering $\omega \sim m_{\pi^2}/M$: χ PT counting for J_{μ} and $W_{\mu\nu}$

+ crossed

• $\omega \sim m_{\pi^2}/M$: χPT counting for J_{μ} and $W_{\mu\nu}$

+ crossed

Correct Thomson limit, very small wf dependence Hildebrandt, Griesshammer, Hemmert (2005)

• $\omega \sim m_{\pi^2}/M$: χPT counting for J_{μ} and $W_{\mu\nu}$

+ crossed

- Correct Thomson limit, very small wf dependence Hildebrandt, Griesshammer, Hemmert (2005)
- ω~m_π, χ PT coutning applies to entire γ NN kernel: J_vGJ_µ + J_µGJ_v + W_{µv}, i.e. G perturbative in V

• $\omega \sim m_{\pi}^2/M$: χPT counting for J_{μ} and $W_{\mu\nu}$

+ crossed

- Correct Thomson limit, very small wf dependence Hildebrandt, Griesshammer, Hemmert (2005)
- $\omega \sim m_{\pi}$, χPT coutning applies to entire γNN kernel: $J_{\nu}GJ_{\mu} + J_{\mu}GJ_{\nu} + W_{\mu\nu}$, i.e. G perturbative in V

Terms that maintain current conservation shifted to higher chiral order

γd scattering at O(e²P) [NLO]

Beane, Malheiro, DP, van Kolck, Nucl. Phys. A (1999)

For $\omega \sim m_{\pi}$ only $W_{\mu\nu}$ contributes at this order

Related to one-pion exchange by minimal substitution

50% of dcs at 80 MeV: related to polarizabilities

Harald Griesshammer, Talk at Chiral Dynamics 06

Harald Griesshammer, Talk at Chiral Dynamics 06

Wave-function dependence < 1%, Thomson limit exact</p>

Harald Griesshammer, Talk at Chiral Dynamics 06

Wave-function dependence < 1%, Thomson limit exact</p>

ω~100 MeV: Role of Delta; confirms 1999 power counting

Harald Griesshammer, Talk at Chiral Dynamics 06

Wave-function dependence < 1%, Thomson limit exact</p>

■ ω~100 MeV: Role of Delta; confirms 1999 power counting

Need better data: Compton@MAX-Lab, HIγS

Choudhury-Shukla, Nogga, DP (2007, 2009)

Choudhury-Shukla, Nogga, DP (2007, 2009)

O(e²P)[NLO] calculation: same operator as in NN case

Choudhury-Shukla, Nogga, DP (2007, 2009)

O(e²P)[NLO] calculation: same operator as in NN case

Serious $\chi ET {}^{3}He$ wave functions of consistent order

Choudhury-Shukla, Nogga, DP (2007, 2009)

O(e²P)[NLO] calculation: same operator as in NN case

Solution Various $\chi ET^{3}He$ wave functions of consistent order

Choudhury-Shukla, Nogga, DP (2007, 2009)

O(e²P)[NLO] calculation: same operator as in NN case

Solution Various $\chi ET^{3}He$ wave functions of consistent order

Successful extension of χET to A=3 EM observables

Measure neutron polarizabilities with larger dcs

Future work: Compton in A=2,3

Future work: Compton in A=2,3
γd: O(e²P²) mechanisms⇒3% calculation of dcs
Unified theory of γp and γd for ω=0-120 MeV

McGovern, Greisshammer talks

Future work: Compton in A=2,3
γd: O(e²P²) mechanisms⇒3% calculation of dcs
Unified theory of γp and γd for ω=0-120 MeV McGovern, Greisshammer talks
γ³He: good place to learn about neutron polarizabilities Weller plenary talk Future work: Compton in A=2,3 ■ $\gamma d: O(e^2 P^2)$ mechanisms $\Rightarrow 3\%$ calculation of dcs Unified theory of γp and γd for $\omega = 0 - 120$ MeV McGovern, Greisshammer talks \checkmark γ^3 He: good place to learn about neutron polarizabilities Weller plenary talk \checkmark γ^3 He needs: understanding of "low-energy" regime, impact of Delta(1232) on predictions

Future work: Compton in A=2,3 ■ $\gamma d: O(e^2 P^2)$ mechanisms $\Rightarrow 3\%$ calculation of dcs Unified theory of γp and γd for $\omega = 0 - 120$ MeV McGovern, Greisshammer talks \checkmark γ^3 He: good place to learn about neutron polarizabilities Weller plenary talk \checkmark γ^3 He needs: understanding of "low-energy" regime, impact of Delta(1232) on predictions **Calculations** for ω close to pion-production threshold Breakup processes

Future work: Compton in A=2,3 ■ $\gamma d: O(e^2 P^2)$ mechanisms $\Rightarrow 3\%$ calculation of dcs Unified theory of γp and γd for $\omega = 0 - 120$ MeV McGovern, Greisshammer talks \checkmark γ^3 He: good place to learn about neutron polarizabilities Weller plenary talk \checkmark γ^3 He needs: understanding of "low-energy" regime, impact of Delta(1232) on predictions **Calculations** for ω close to pion-production threshold Breakup processes

Data!

Compare A=2 & 3 extractions of polarizabilities (incl. spin plarizabilities)

Gazit (2008)

■ μ^{3} He → ν_{μ}^{3} H: Γ =1499(2)_Λ(3)_{NM}(5)_t(6)_{RC} Hz;

Gazit (2008)

- Experiment: $\Gamma = 1496(4)$ Hz
- Costraints on g_P, second-class currents

 $\mu^{3} \text{He} \rightarrow \nu_{\mu}^{3} \text{H:} \ \Gamma = 1499(2)_{\Lambda}(3)_{\text{NM}}(5)_{t}(6)_{\text{RC}} \text{ Hz};$

Gazit (2008)

- **Experiment:** Γ=1496(4) Hz
- Costraints on g_P, second-class currents

Helium-6 beta decay: short-distance 2B current cancels long-distance 2B current MB reduction in GT strength?

Vaintraub, Barnea, Gazit (2009)

 $\mu^{3} \text{He} \rightarrow \nu_{\mu}^{3} \text{H:} \ \Gamma = 1499(2)_{\Lambda}(3)_{\text{NM}}(5)_{t}(6)_{\text{RC}} \text{ Hz};$

```
Gazit (2008)
```

- Experiment: $\Gamma = 1496(4)$ Hz
- Costraints on g_P, second-class currents

 Helium-6 beta decay: short-distance 2B current cancels long-distance 2B current MB reduction in GT strength? Vaintraub, Barnea, Gazit (2009)

■ Two-body Goldberger-Trieman relation relates c_D to tritium beta decay: -0.3≤c_D≤-0.1

Gardestig and DP (2006); Gazit, Quaglioni, Navratil (2008)

J_{μ} worked out to O(eP⁴): N⁴LO!

- **J**_{μ} worked out to O(eP⁴): N⁴LO!
- Consistent J_µ and H + few-body expertise=accurate calculations of electromagnetic reactions for NN, 3N, 4N
 Access to neutron properties

- **J**_{μ} worked out to O(eP⁴): N⁴LO!
- Consistent J_µ and H + few-body expertise=accurate calculations of electromagnetic reactions for NN, 3N, 4N
 Access to neutron properties
 Experimental landscape: HIGS, MAXLab, ???

- **J**_{μ} worked out to O(eP⁴): N⁴LO!
- Consistent J_µ and H + few-body expertise=accurate calculations of electromagnetic reactions for NN, 3N, 4N
 Access to neutron properties
 Experimental landscape: HIGS, MAXLab, ???
- Interplay of long- and short-range dynamics systematically captured by χET

- **J**_{μ} worked out to O(eP⁴): N⁴LO!
- Consistent J_µ and H + few-body expertise=accurate calculations of electromagnetic reactions for NN, 3N, 4N
 Access to neutron properties
 Experimental landscape: HIGS, MAXLab, ???
- Interplay of long- and short-range dynamics systematically captured by χET
- This interplay is key to an accurate understanding of a variety of electroweak reactions in few-nucleon systems

Four bodies: neutron capture on ³He

Full FY calculation of threshold n-³He interaction

	$BE(^{3}H)$	BE(³ He)	$BE(^{4}He)$	$r_{ m He4}$	$P_D(^4\text{He})$	$a_{n{ m He3}}$
Av18	7.623	6.925	24.23	1.516	13.8	3.43 - 0.0082i
I-N3LO	7.852	7.159	25.36	1.52	9.30	3.56 - 0.0070i
INOY	8.483	7.720	29.08	1.377	5.95	3.26 - 0.0058i
Av18+UIX	8.483	7.753	28.47	1.431	16.0	3.23 - 0.0054i
I-N3LO+UIX*	8.482	7.737	28.12	1.475	10.9	3.44 - 0.0055i
Exp.:	8.482	7.718	28.30	1.475(6)		3.278(53) - 0.001(2)i

Four bodies: neutron capture on ³He

Full FY calculation of threshold n-³He interaction

Electron-deuteron observables

$$G_{C} = \frac{1}{3|e|} \left(\left\langle 1 \left| J^{0} \right| 1 \right\rangle + \left\langle 0 \left| J^{0} \right| 0 \right\rangle + \left\langle -1 \left| J^{0} \right| - 1 \right\rangle \right),$$

$$G_{Q} = \frac{1}{2|e|\eta M_{d}^{2}} \left(\left\langle 0 \left| J^{0} \right| 0 \right\rangle - \left\langle 1 \left| J^{0} \right| 1 \right\rangle \right)$$

$$G_{M} = -\frac{1}{\sqrt{2\eta}|e|} \left\langle 1 \left| J^{+} \right| 0 \right\rangle; \qquad \eta = \frac{Q^{2}}{4M_{d}^{2}}$$

THEORY

Electron-deuteron observables

$$G_{C} = \frac{1}{3|e|} \left(\left\langle 1 \left| J^{0} \right| 1 \right\rangle + \left\langle 0 \left| J^{0} \right| 0 \right\rangle + \left\langle -1 \left| J^{0} \right| - 1 \right\rangle \right),$$

$$G_{Q} = \frac{1}{2|e|\eta M_{d}^{2}} \left(\left\langle 0 \left| J^{0} \right| 0 \right\rangle - \left\langle 1 \left| J^{0} \right| 1 \right\rangle \right)$$

$$G_{M} = -\frac{1}{\sqrt{2\eta}|e|} \left\langle 1 \left| J^{+} \right| 0 \right\rangle; \qquad \eta = \frac{Q^{2}}{4M_{d}^{2}}$$

THEORY

EXPERIMENT

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[A(Q^2) + B(Q^2)\tan^2\left(\frac{\theta_e}{2}\right)\right]; \quad T_2$$

$$T_{20}(Q^2;\theta_e)$$

Electron-deuteron observables

$$\begin{split} G_{C} &= \frac{1}{3|e|} \left(\left\langle 1 \left| J^{0} \right| 1 \right\rangle + \left\langle 0 \left| J^{0} \right| 0 \right\rangle + \left\langle -1 \left| J^{0} \right| - 1 \right\rangle \right), \\ G_{Q} &= \frac{1}{2|e|\eta M_{d}^{2}} \left(\left\langle 0 \left| J^{0} \right| 0 \right\rangle - \left\langle 1 \left| J^{0} \right| 1 \right\rangle \right) \\ G_{M} &= -\frac{1}{\sqrt{2\eta}|e|} \left\langle 1 \left| J^{+} \right| 0 \right\rangle; \qquad \eta = \frac{Q^{2}}{4M_{d}^{2}} \\ A &= G_{C}^{2} + \frac{2}{3} \eta G_{M}^{2} + \frac{8}{9} \eta^{2} M_{d}^{4} G_{Q}^{2}, \\ B &= \frac{4}{3} \eta (1+\eta) G_{M}^{2}, \\ T_{20} &= -\frac{1}{\sqrt{2} A(Q^{2}) + B(Q^{2}) \tan^{2} \left(\frac{\theta_{c}}{2}\right)} \left[\frac{8}{3} \eta G_{C}(Q^{2}) G_{Q}(Q^{2}) + \frac{8}{9} \eta^{2} G_{Q}^{2}(Q^{2}) \\ &\quad + \frac{1}{3} \eta \left\{ 1 + 2(1+\eta) \tan^{2} \left(\frac{\theta_{c}}{2}\right) \right\} G_{M}^{2}(Q^{2}) \right]. \end{split}$$

EXPERIMENT

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[A(Q^2) + B(Q^2)\tan^2\left(\frac{\theta_e}{2}\right)\right]; \qquad T_{20}(Q^2;\theta_e)$$

Recent experiments; strategy

PRELIMINARY

IN PROGRESS

Recent experiments; strategy JLab Hall A: $A(Q^2) Q^2 = 0.7-6 \text{ GeV}^2$, $B(Q^2) = ?$ JLab Hall C: $T_{20}(Q^2)$, $A(Q^2) Q^2=0.66-1.8 \text{ GeV}^2$ Novosibirsk: $T_{20}(Q^2) Q^2 = 0.32 - 0.84 \text{ GeV}^2$ BLAST: $T_{20}(Q^2)$ Q²=0.137-0.667 GeV² PRELIMINARY **JLab Hall A:** $A(Q^2)=0.04-0.64 \text{ GeV}^2$ **IN PROGRESS**

Recent experiments; strategy JLab Hall A: $A(Q^2) Q^2 = 0.7-6 \text{ GeV}^2$, $B(Q^2) = ?$ JLab Hall C: $T_{20}(Q^2)$, $A(Q^2) Q^2=0.66-1.8 \text{ GeV}^2$ Novosibirsk: $T_{20}(Q^2) Q^2 = 0.32 - 0.84 \text{ GeV}^2$ BLAST: $T_{20}(Q^2)$ Q²=0.137-0.667 GeV² PRELIMINARY JLab Hall A: $A(Q^2)=0.04-0.64 \text{ GeV}^2$ **IN PROGRESS** B gives G_M STRATEGY T₂₀ gives G_C/G_Q ; A yields $G_C^2 + G_Q^2$ Abbott et al., Eur. Phys. J. A47, 421 (2000) up to Q²=1.4 GeV²

G_c and factorization

DP (2003)

"Direct" χΕΤ
 prediction fails

 Failure to describe nucleon structure

G_c/G_E has good chiral expansion

Test predictions for deuteron

Results for form factors

DP, Phys. Lett. B567, 12 (2003)

OPE agreement with data already good

OPE agreement with data already good

More sensitivity to short-range dynamics

OPE agreement with data already good

More sensitivity to short-range dynamics

Counterterm at O(eP⁴)

OPE agreement with data already good

More sensitivity to short-range dynamics

Counterterm at O(eP⁴)

Shifts possibly perturbative at q<600 MeV</p>

Static properties and renormalization
	Expt.	NNLO	Nijm93
r _d (fm)	1.975(1)	1.970- 1.972	1.967
Q_d (fm ²)	0.2859(3)	0.279- 0.282	0.276

	Expt.	NNLO	Nijm93
r _d (fm)	1.975(1)	1.970- 1.972	1.967
Q_d (fm ²)	0.2859(3)	0.279- 0.282	0.276

r_dOK

	Expt.	NNLO	Nijm93	
r _d (fm)	1.975(1)	1.970- 1.972	1.967	
Q_d (fm ²)	0.2859(3)	0.279- 0.282	0.276	

3.5% error in Q_d consistent with O(eP⁵) correction?

rd OK

	Expt.	NNLO	Nijm93
r _d (fm)	1.975(1)	1.970- 1.972	1.967
Q_d (fm ²)	0.2859(3)	0.279- 0.282	0.276

3.5% error in Q_d consistent with O(eP⁵) correction?

Yes! Two-body ${}^{3}S_{1} \rightarrow {}^{3}S_{1}$ operator: $O(eP^5) :=$

Chen, Rupak, and Savage (1999); DP (2006)

rd OK

	Expt.	NNLO	Nijm93
r _d (fm)	1.975(1)	1.970- 1.972	1.967
Q_d (fm ²)	0.2859(3)	0.279- 0.282	0.276

3.5% error in Q_d consistent with O(eP⁵) correction?

Yes! Two-body ${}^{3}S_{1} \rightarrow {}^{3}S_{1}$ operator: $O(eP^5) :=$

 $\Delta Q_d = 0.004 \text{ fm}^2 \Rightarrow \Lambda_Q = 1.4 \text{ GeV}$

Chen, Rupak, and Savage (1999); DP (2006)

rd OK

 χET for G_C/G_Q at NNLO

 χET for G_C/G_Q at NNLO

Nucleon
 structure
 cancels out

Good agreement with extant data

 χET for G_C/G_Q at NNLO

 Nucleon structure cancels out

> Good agreement with extant data

 χET for G_C/G_Q at NNLO

Nucleon structure cancels out

Good agreement with extant data

Variation in value of Q_d associated with physics at $r\sim 1/\Lambda$.

Pictures courtesy H. Griesshammer

SSSSSSSSSSS

NNNNNNNNN

Pictures courtesy H. Griesshammer

$H = -2\pi\alpha_E \mathbf{E}^2 - 2\pi\beta_M \mathbf{B}^2$

SSSSSSSSSS

Pictures courtesy H. Griesshammer

$$H = -2\pi \alpha_E \mathbf{E}^2 - 2\pi \beta_M \mathbf{B}^2$$

 $\chi \text{PT } O(e^2 P) : \alpha_E^{(p)} = 10\beta_M^{(p)} = 12.5 \times 10^{-4} \text{ fm}^3$
 $\alpha_E^{(p)} = \alpha_E^{(n)}; \quad \beta_M^{(p)} = \beta_M^{(n)}$

Bernard, Kaiser, Meissner (1991)

Reproduces Lund and Illinois data at E_γ=65 MeV; modest wave-function dependence

Reproduces Lund and Illinois data at E_γ=65 MeV; modest wave-function dependence

Reproduces Lund and Illinois data at E_γ=65 MeV; modest wave-function dependence

Problems at E_γ=95 MeV (SAL)

Reproduces Lund and Illinois data at E_γ=65 MeV; modest wave-function dependence

Problems at E_γ=95 MeV (SAL)

Both issues persist at NNLO

Beane, Malheiro, McGovern, DP, van Kolck, Phys. Lett. B (2003), Nucl. Phys. A (2005)

Good description; good convergence

• $O(e^2P^2)$: two free

parameters Beane, McGovern, Malheiro, Phillips, van Kolck (2004)

Good description; good convergence

 $O(e^2P^2)$: two free

parameters Beane, McGovern, Malheiro, Phillips, van Kolck (2004) Wave function dependence now understood Hildebrandt, Griesshammer, Hemmert (2005)

Good description; good convergence

 $O(e^2P^2)$: two free

parameters

Beane, McGovern, Malheiro,
Phillips, van Kolck (2004)

Wave function

dependence now
understood
Hildebrandt, Griesshammer,
Hemmert (2005)

Little sensitivity to

polarizabilities here

γd scattering with explicit Δs

Hildebrandt, Griesshammer, Hemmert, DP, Nucl. Phys. A (2005)

- **Calculation to NLO in \chi ET with \Delta s**
- Only Δ effects in γ N amplitude: no 2B Δ effects at NLO

• Assume $\alpha_E^{(s)} = 11.0 \times 10^{-4} \text{ fm}^3; \beta_N^{(s)} = 2.8 \times 10^{-4} \text{ fm}^3$

HIGS@TUNL: Polarized γs on polarized He-3 (Gao)

HIGS@TUNL: Polarized γs on polarized He-3 (Gao)

$$\gamma_1^{(n)} = (3.7 \pm 0.6_{\text{stat}}) \times 10^{-4} \text{ fm}^4$$

Picture credits: Haiyan Gao

HIYS projections with polarized tgt

Plot and numbers courtesy Haiyan Gao