

Investigation of π⁺π⁻ and πK atoms at DIRAC

Valery Yazkov on behalf of DIRAC collaboration

Skobeltsin Institute for Nuclear Physics, Moscow

Sixth International Workshop on Chiral Dynamics 6-10 July 2009, Bern, Switzerland

DIRAC collaboration

Tokyo, Japan

Dubna, Russia

Bern, Switzerland

Zurich, Switzerland

Bucharest, Romania

Santiago de Compostela, Spain

Theoretical status

History of Chiral Perturbation Theory (ChPT) :

- S. Weinberg 1966 1979
- J. Gasser & H. Leutwyler 1983 1985

Colangelo et al. in 2001, using ChPT (2-loop) & Roy equations:

 $\begin{array}{l} a_0 = & 0.220 \pm 2.3\% \\ a_2 = -0.0444 \pm 2.3\% \end{array} \right\} \quad a_0 - a_2 = 0.265 \pm 1.5\% \\ \end{array}$

These results (precision) depend on the low-energy constants (LEC) l_3 and l_4 : Lattice gauge calculations from 2006 provided values for these l_3 and l_4 .

> Because l_3 and l_4 are sensitive to the quark condensate, precision measurements of a_0 , a_2 are a way to study the structure of the QCD vacuum.

Pionium lifetime

Pionium (A_{2 π}) is a hydrogen-like atom consisting of π^+ and π^- mesons: $E_{\rm B}$ =-1.86 keV, $r_{\rm B}$ =387 fm, $p_{\rm B}$ ≈0.5 MeV The lifetime of $\pi^+\pi^-$ atoms is dominated by the annihilation process into $\pi^0 \pi^0$:

$$\Gamma = \frac{1}{\tau} = \Gamma_{2\pi_0} + \Gamma_{2\gamma} \operatorname{with} \frac{\Gamma_{2\gamma}}{\Gamma_{2\pi_0}} \approx 4 \times 10^{-3}$$

$$\Gamma_{1S,2\pi^0} = R |a_0 - a_2|^2 \quad \text{with} \quad \frac{\Delta R}{R} \approx 1.2\%^*$$

$$\operatorname{Gasser et al} (2001)$$

$$\tau = (2.9 \pm 0.1) \times 10^{-15} s$$

S

 a_0 and a_2 are the $\pi\pi$ S-wave scattering lengths for isospin I=0 and I=2.

If
$$\frac{\Delta \tau}{\tau} = 4\% \implies \frac{\Delta |a_0 - a_2|}{|a_0 - a_2|} = 2\%$$

πK scattering lengths

I. ChPT predicts s-wave scattering lengths:

 $a_0^{1/2} = 0.19 \pm 0.2$ $a_0^{3/2} = -0.05 \pm 0.02$ $\mathscr{L}^{(2)}, \mathscr{L}^{(4)}$ and 1 - loop

V. Bernard, N. Kaiser, U. Meissner. – 1991

 $a_0^{1/2} - a_0^{3/2} = 0.23 \pm 0.01$

A. Rossel. – 1999

J. Bijnens, P. Talaver. – April 2004

 $\mathscr{L}^{(2)}, \mathscr{L}^{(4)}, \mathscr{L}^{(6)}$ and 2-loop

II. Roy-Steiner equations:

 $a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015$

P.Büttiker et al. -2004

$K^+\pi^-$ and $K^-\pi^+$ atoms lifetime

*K*π-atom ($A_{K\pi}$) is a hydrogen-like atom consisting of K^+ and π^- mesons:

 $E_B = -2.9 \text{ keV } r_B = 248 \text{ fm} p_B \approx 0.8 \text{ MeV}$

The $K\pi$ -atom lifetime (ground state 1S), $\tau=1/\Gamma$ is dominated by the annihilation process into $K^0\pi^0$:

$$A_{K^+\pi^-} \to \pi^0 K^0 \quad A_{\pi^+K^-} \to \pi^0 \overline{K}$$

$$\Gamma_{1S,K^0\pi^0} = R_K \left| a_{1/2} - a_{3/2} \right|^2 \text{ with } \frac{\Delta R_K}{R_K} \approx 2\%$$

* J. Schweizer (2004)

From Roy-Steiner equations: $a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015$ $\tau = (3.7 \pm 0.4) \cdot 10^{-15} s$

If
$$\frac{\Delta\Gamma}{\Gamma} = 20\% \implies \frac{\Delta |a_{1/2} - a_{3/2}|}{|a_{1/2} - a_{3/2}|} = 10\%$$

πK scattering

What new will be known if πK scattering length will be measured?

The measurement of the *s*-wave πK scattering lengths would test our understanding of the chiral $SU(3)_L \times SU(3)_R$ symmetry breaking of QCD (*u*, *d* and *s* quarks), while the measurement of $\pi \pi$ scattering lengths checks only the $SU(2)_L \times SU(2)_R$ symmetry breaking (*u*, *d* quarks).

This is the principal difference between $\pi\pi$ and πK scattering!

Experimental data on the πK low-energy phases are absent

Method of $A_{2\pi}$ observation and lifetime measurement

 $\tau(A_{2\pi})$ is too small to be measured directly. E. m. interaction of $A_{2\pi}$ in the target:

$$A_{2\pi} \rightarrow \pi^+ \pi^-$$

 $Q < 3MeV/c, \Theta_{lab} < 3 mrad$

Coulomb from short-lived sources $N_A = K(Q_0) N_C(Q < Q_0)$ with known $K(Q_0)$ Breakup probability: $P_{br} = n_A / N_A$

non-Coulomb from long-lived sources

Break-up probability

Solution of the transport equations provides one-to-one dependence of the measured break-up probability (P_{br}) on pionium lifetime τ

All targets have the same thickness in radiation lengths 6.7*10⁻³ X₀

> There is an optimal target material for a given lifetime

Method of $A_{2\pi}$ observation and lifetime measurement

Main features of the DIRAC set-up

Thin targets: ~ $7 \times 10^{-3} X_0$ Nuclear efficiency: 3×10^{-4} Vacuum magnetic spectrometer Proton beam ~ 10^{11} proton/spill Momentum of secondaries 1.3 - 7 GeV/c Resolution on Q: $Q_x \approx Q_y \approx 0.3$ Mev/c, $Q_I \approx 0.5$ MeV/c

The same method is applied to $A_{\pi K}$,

$$p_{K} = \frac{m_{K}}{m_{\pi}} p_{\pi}$$

DIRAC Spectrometer

Setup features:

angle to proton beam Θ =5.7° channel aperture $\Omega = 1.2 \cdot 10^{-3} \text{ sr}$ magnet 2.3 T·m momentum range $1.2 \le p_{\pi} \le 7 \text{ GeV}/c$ resolution on relative momentum $\sigma_{QX} \approx \sigma_{QY} \leq 0.5 \text{ MeV}/c$, $\sigma_{QL} \approx 0.5 \text{ MeV}/c$

Trajectories of π^- and K^+ from the $A_{K\pi}$ break-up

The $A_{K\pi}$, π^- and K^+ momenta are shown in the following table:

P _{atom} (GeV/c)	P _π (GeV/c)	P _K (GeV/c)
5.13	1.13	4.0
5.77	1.27	4.5
6.41	1.41	5.0
10.26	2.26	8.0

DIRAC experimental setup

Modifided parts

Upgraded DIRAC experimental setup

Analysis based on MC

Atoms are generated in **nS states** using measured momentum distribution for **short-lived** sources. The atomic pairs are generated according to the evolution of the atom while propagating through the target

Background processes:

Coulomb pairs are generated according to $A_C(Q)Q^2$ using measured momentum distribution for **short-lived** sources.

Non-Coulomb pairs are generated according to **Q**² using measured momentum distribution for **long-lived** sources.

Atomic pairs MC

Atomic pairs (2001)

DIRAC preliminary results with GEM/MSGC

Q_L distribution

←All events

←After background subtraction

DIRAC preliminary results with GEM/MSGC

DIRAC Experimental results

 $A_{2\pi}$ lifetime

2005 **DIRAC** (PL B619, 50)
$$\tau = \left(2.91 + 0.45 \Big|_{stat} + 0.19 \Big|_{syst}\right) \text{ fs} = \left(\dots + 0.49 \Big|_{tot}\right) \text{ fs}$$

...based on 2001 data (6530 observed atoms)

$$\Rightarrow |a_0 - a_2| = 0.264 \pm 7.2\% |_{stat} \pm \frac{10}{3}\% |_{syst} = \dots \pm \frac{13}{8}\% |_{tot}$$

2008 **DIRAC** (SPSC 22/04/08)
$$\tau = \left(2.82 + 0.25 \atop -0.23 \end{vmatrix}_{stat} \pm 0.19 \end{vmatrix}_{syst} \operatorname{fs} = \left(\dots + 0.31 \atop -0.30 \end{vmatrix}_{tot} \operatorname{fs}$$

...major part 2001-03 data (13300 observed atoms)

$$\Rightarrow |a_0 - a_2| = 0.268 \pm 4.4\%|_{stat} \pm 3.7\%|_{syst} = \dots \pm 5.5\%|_{tot}$$

Including GEM/MicroStripGasChambers => number of reconstructed events is 17000 => the statistical error in $|a_0-a_2|$ is 3%, and the expected full error is <5%.

Comparison with other experimental results $K \rightarrow 3\pi$

2006 NA48/2 (PL B633, 173) ...with ChPT constraint between a_0 and a_2 :

$$\Rightarrow a_0 - a_2 = 0.264 \pm 2.3\% \big|_{stat} \pm 1.5\% \big|_{syst} \pm 4.9\% \big|_{ext} = \dots \pm 5.6\% \big|_{tot}$$

2009 NA48/2 (seminar at CERN)

...without constraint $(a_2 \text{ free})$:

$$\Rightarrow a_0 - a_2 = 0.257 \pm 1.9\% |_{stat} \pm 0.8\% |_{syst} \pm 0.4\% |_{ext} \pm 3.5\% |_{th} = \dots \pm 4.1\% |_{tot}$$
$$\Rightarrow a_2 = -0.024 \pm 54\% |_{stat} \pm 38\% |_{syst} \pm 8.3\% |_{ext} \pm 63\% |_{th} = \dots \pm 92\% |_{tot}$$

...with ChPT constraint between a_0 and a_2 :

$$\Rightarrow a_0 - a_2 = 0.263 \pm 0.8\% \big|_{stat} \pm 0.4\% \big|_{syst} \pm 0.8\% \big|_{ext} \pm 1.9\% \big|_{th} = \dots \pm 2.2\% \big|_{tot}$$

Comparison with other experimental results <u>Ke4:</u>

2008 NA48/2 (EPJ C54, 411)

...without constraint (a_2 free):

$$\Rightarrow a_0 = 0.233 \pm 6.9\% \big|_{stat} \pm 3.0\% \big|_{syst} = ... \pm 7.5\% \big|_{tot}$$
$$\Rightarrow a_2 = -0.0471 \pm 23\% \big|_{stat} \pm 8.5\% \big|_{syst} = ... \pm 25\% \big|_{tot}$$

2009 NA48/2 (seminar at CERN)

...without constraint (a_2 free):

$$\Rightarrow a_0 = 0.2220 \pm 5.8\% |_{stat} \pm 2.3\% |_{syst} \pm 1.7\% |_{th} = ... \pm 6.5\% |_{tot}$$
$$\Rightarrow a_2 = -0.0432 \pm 20\% |_{stat} \pm 7.9\% |_{syst} \pm 6.5\% |_{th} = ... \pm 22\% |_{tot}$$

...with ChPT constraint between a_0 and a_2 :

 $\Rightarrow a_0 = 0.2206 \pm 2.2\% \big|_{stat} \pm 0.8\% \big|_{syst} \pm 2.9\% \big|_{th} = \dots \pm 3.7\% \big|_{tot}$

π^-K^+ and π^+K^- atom signal

In total: 173 \pm 54 π K-atomic pairs are observed with a significance of 3.2 σ .

 $\tau > 0.8 * 10^{-15} s$ at 90%*CL*

B. Adeva et al., "Evidence for πK -atoms with DIRAC", Physics Letters B 674 (2009) 11 Y. Allkofer, PhD Thesis, Universität Zürich, 2008.

Plans for 2010

Observation of the long-lived states of $A_{2\pi}$ is opening a possibility to measure the Lamb shift and to determine the new combination of $\pi\pi$ scattering lengths $2a_0 + a_2$.

For this observation, which was planed in our addendum, we need the run in 2010 during around 5 months in the same conditions as in 2009.

Metastable Atoms

Illustration for observation of the $A_{2\pi}$ long-lived states with breaking foil.

Metastable Atoms

Probabilities of the $A_{2\pi}$ breakup (Br) and yields of the long-lived states for different targets provided the maximum yield of summed population of the long-lived states: $\Sigma(l \ge 1)$

Target	Thickness	Br	Σ	2p ₀	3p ₀	4p ₀	Σ
Ζ	μ		(<i>l</i> ≥1)				(l=1, m=0)
04	100	4.45%	5.86%	1.05%	0.46%	0.15%	1.90%
06	50	5.00%	6.92%	1.46%	0.51%	0.16%	2.52%
13	20	5.28%	7.84%	1.75%	0.57%	0.18%	2.63%
28	5	9.42%	9.69%	2.40%	0.58%	0.18%	3.29%
78	2	18.8%	10.5%	2.70%	0.54%	0.16%	3.53%

Energy splitting between np - ns states in $\pi^+\pi^-$ atom $\Delta E_n \equiv E_{ns} - E_{np}$ $\Delta E_n \approx \Delta E_n^{vac} + \Delta E_n^s$ $\Delta E_n^s \sim 2a_0 + a_2$ For n=2 $\Delta E_2^{vac} = -0.107 \ eV \ from \ QED \ calculations$ $\Delta E_2^s \approx -0.45 \ eV$ numerical estimated value from ChPT $a_0 = 0.220 \pm 0.005$

 $\begin{array}{l} a_0 = 0.220 \pm 0.003 \\ a_2 = -0.0444 \pm 0.0010 \end{array}$

(2001) G. Colangelo, J. Gasser and H. Leutwyler

$$\Rightarrow \Delta E_2 \approx -0.56 \text{ eV}$$

(1979) A. Karimkhodzhaev and R. Faustov
(1983) G. Austen and J. de Swart
(1986) G. Efimov *et al.*(1999) A. Gashi *et al.*

(2000) D. Eiras and J. Soto
(2004) J. Schweizer, EPJ C36 483
A. Rusetsky, *priv. comm.*

Prospects of DIRAC

Creation of an intense source of $\pi\pi$, πK and other exotic atoms at SPS proton beam and using them for accurate measurements of all S-wave $\pi\pi$ and πK scattering length to check the precise low energy *QCD* predictions

DIRAC prospects at SPS CERN Yields of atoms at PS and SPS

Yield of dimeson atoms per one proton-Ni interaction, detectable by DIRAC upgrade setup at Θ_L =5.7°

		24 GeV			450 GeV		
E _p	$A_{2\pi}$	$A_{K} + \pi^{-}$	$A_{\pi}+K^{-}$	$A_{2\pi}$	$A_{K} + \pi^{-}$	$A_{\pi}+K^{-}$	
W _A	1.1·10 ⁻⁹	0.52·10 ⁻¹⁰	0.29·10 ⁻¹⁰	0.13·10 ⁻⁷	0.10·10 ⁻⁸	0.71·10 ⁻⁹	
W _A N	1.	1.	1.	12.	19.	24.	
w _A /w _π	3.4·10 ⁻⁸	16.·10 ⁻¹⁰	9.·10 ⁻¹⁰	1.3·10 ⁻⁷	1.·10 ⁻⁸	7.1·10 ⁻⁹	
W _A ^N / W _π ^N	1.	1.	1.	3.8	6.2	8.	
				A multiplier due to different spill duration ~4			
Total gain	1.	1.	1.	15.	25.	32.	

DIRAC prospects at SPS CERN

Present low-energy QCD predictions for $\pi\pi$ and πK scattering lengths

 $\pi \pi \ \delta a_0 = 2.3\% \ \delta a_2 = 2.3\% \ \delta (a_0 - a_2) = 1.5\% \qquad \text{...will be improved by Lattice calculations}$ $\pi K \ \delta a_{1/2} = 11\% \ \delta a_{3/2} = 40\% \ \delta a_{1/2} = 10\% \ \delta a_{3/2} = 17\% \qquad \text{...will be significantly improved by ChPT}$ $\underline{Planned results of DIRAC ADDENDUM at PS CERN after 2008-2009}$ $\tau (A_{2\pi}) \rightarrow \delta (a_0 - a_2) = \pm 2\% (stat) \pm 1\% (syst) \pm 1\% (theor)$ $\tau (A_{\pi K}) \rightarrow \delta (a_{1/2} - a_{3/2}) = \pm 10\% (stat) \pm \dots \pm 1.5\% (theor)$

<u>2010-2011</u> Observation of metastable $\pi^+\pi^-$ atoms and study of a possibility to measure its Lamb shift. Study of the possibility to observe K^+K^- and $\pi^\pm\mu^\mp$ atoms using 2008-2009 data.

DIRAC at SPS CERN beyond 2011

$$\tau(A_{2\pi}) \rightarrow \delta(a_0 - a_2) = \pm 0.5\%(stat)$$

$$(E_{np} - E_{ns})_{\pi\pi} \rightarrow \delta(2a_0 + a_2)$$

$$\tau(A_{\pi K}) \to \delta(a_{1/2} - a_{3/2}) = \pm 2.5\%(stat)$$
$$(E_{np} - E_{ns})_{\pi K} \to \delta(2a_{1/2} + a_{3/2})$$

Thank you for your attention

Estimation of relative errors for break-up probability measurement

	Q	QL	Q_L, Q_T				
Statistical	0.031	0.044	0.031				
Multiple scattering	0.018	0.008	0.014				
Heavy particles admixture	0.001	0.008	0.001				
Finit size effects	0./ -0.006	0./ -0.004	0./ -0.005/				
Double track resolution	0.009	0.001	0.003				
Background particles	0.002	0.003	0.002				
Trigger simulation	0.002	0.002	0.003	Fs	tima	tion of	
All systematic	+0.021/ -0.022	0.012	+0.015/ -0.016	relat	ive e	errors for	
			Stat	tistical	lifet	inie - 0.122	
			Sys	Systematic 0.033 - 0.060			