Lattice Study of χ PT Beyond QCD

Ethan T. Neil on behalf of the LSD Collaboration ethan.neil@yale.edu

Department of Physics Yale University

6th International Workshop on Chiral Dynamics University of Bern July 9, 2009

Ethan Neil (Yale)

Lattice χ PT Beyond QCD

July 9, 2009 1 / 15

Outline

Introduction

Motivation

- χ PT at general N_f
- Conformal Transition

Lattice Results

- Basic Setup
- Results and Chiral Extrapolation

3 Conclusion

Introduction

Lattice Strong Dynamics (LSD) Collaboration

J. C. Osborn Argonne National Laboratory

R. Babich, R. C. Brower, M. A. Clark, S. D. Cohen, C. Rebbi, D. Schaich Boston University

> M. Cheng, R. Soltz, P. M. Vranas Lawrence Livermore National Laboratory

> > J. Kiskis University of California, Davis

T. Appelquist, G. T. Fleming, E. T. Neil Yale University

http://www.yale.edu/LSD/

Introduction and Motivation

- "Beyond QCD": Yang-Mills gauge theory, but varying the number of colors N_c, number of light fermions N_f, and fermion representation.
- Why? Many models for physics beyond the Standard Model involve strongly-interacting gauge theories (see plenary by G. Isidori.) But most existing analysis relies heavily on QCD phenomenology.
- Strongly coupled YM gauge theories can look very different from QCD in some cases no confinement, no spontaneous χ SB! ^{1 2}
- Fix $N_c = 3$, fundamental representation, study what happens as we change N_f .

Ethan Neil (Yale)

Lattice χ PT Beyond QCD

July 9, 2009 4 / 15

¹W. Caswell, Phys. Rev. Lett. 33:244,1974

²T. Banks and A. Zaks, Nucl. Phys. B 196:189, 1982 🖬 🖓 🖓 🖓 🖓 🖓

Technicolor and Extended Technicolor

- Technicolor: replace the Higgs mechanism with new strong interaction. Electroweak symmetry is spontaneously broken.
- Simplest example: scaled-up QCD ($N_{TC} = 3$, $N_{TF} = 2$.) χ SB gives three Goldstone bosons which are eaten by the W/Z.
- To give particle masses with no Higgs, include additional fields and interactions called extended technicolor (ETC)³.
- Problem: ETC interactions responsible for mass generation can lead to large flavor-changing neutral currents! E.g. quark masses $m_q \sim \langle \overline{\psi}\psi \rangle / \Lambda_{ETC}^2$. FCNC experimental bounds require large Λ_{ETC} , which in scaled-up QCD forces m_q too small.
- Solution: if $\langle \overline{\psi}\psi\rangle$ is enhanced relative to QCD, then we can get around FCNCs.

³T. Appelquist, M. Piai, R. Shrock, Phys. Rev. D 69,105002₇(2004) ← ≥ → ≥ → Ethan Neil (Yale) Lattice χPT Beyond QCD July 9, 2009 5 / 15

NLO χ PT for general N_f ⁴ ⁵

$$\begin{split} M_m^2/m &= 2B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[2\alpha_8 - \alpha_5 + N_f (2\alpha_6 - \alpha_4) + \frac{1}{N_f} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \\ F_\pi &= F \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\frac{1}{2} (\alpha_5 + N_f \alpha_4) - \frac{N_f}{2} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \\ \langle \overline{\psi}\psi \rangle &= F^2 B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\frac{1}{2} (2\alpha_8 + \eta_2) + 2N_f \alpha_6 - \frac{N_f^2 - 1}{N_f} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \end{split}$$

• α_i , η_i are low- and high-energy constants, rescaled: $\alpha_i = 8(4\pi)^2 L_i$, $\eta_i = 8(4\pi)^2 H_i$.

• N_f appears in both analytic terms and chiral logs.

⁴J. Gasser and H. Leutwyler, Phys. Lett. B 184:1 (1987)

⁵D. R. Nelson, Ph.D. thesis 2002, hep-lat/0212009 < □> < ♂> < ≧> < ≧> < ≧> < ≥

Ethan Neil (Yale)

Lattice χ PT Beyond QCD

NLO χ PT for general N_f ⁴ ⁵

$$\begin{split} M_m^2/m &= 2B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_m + \frac{1}{N_f} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \\ F_\pi &= F \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_F - \frac{N_f}{2} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \\ \langle \overline{\psi}\psi \rangle &= F^2 B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_C - \frac{N_f^2 - 1}{N_f} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \end{split}$$

- Can't distinguish the individual LEC's at this point, so combine into a single fit parameter per observable.
- α_C contains η_2 , which contains UV-divergent "contact term" $m\Lambda^2 \sim m/a^2$ expect large contribution.

⁴J. Gasser and H. Leutwyler, Phys. Lett. B 184:1 (1987) ⁵D. R. Nelson, Ph.D. thesis 2002, hep-lat/0212009 < □ > < □

Ethan Neil (Yale)

Lattice χ PT Beyond QCD

The Conformal Window

• In QCD ($N_f = 2$), we have asymptotic freedom ($g \rightarrow 0$ in the UV) and confinement (" $g \rightarrow \infty$ " in the IR). But as we increase N_f , things change:

	Short-distance (UV)	Long-distance (IR)
$0 < N_f < N_f^c$	Free $(g \rightarrow 0)$	Confined $(g ightarrow \infty)$
$N_{f}^{c} < N_{f} < 16.5$	Free $(g \rightarrow 0)$	Fixed point $(g ightarrow g^{\star})$
$N_{f} > 16.5$	Divergent $(g o \infty)$	Trivial $(g \rightarrow 0)$

The Conformal Window

• In QCD ($N_f = 2$), we have asymptotic freedom ($g \rightarrow 0$ in the UV) and confinement (" $g \rightarrow \infty$ " in the IR). But as we increase N_f , things change:

	Short-distance (UV)	Long-distance (IR)
$0 < N_f < N_f^c$	Free $(g \rightarrow 0)$	Confined $(g ightarrow \infty)$
$N_{f}^{c} < N_{f} < 16.5$	Free $(g \rightarrow 0)$	Fixed point $(g ightarrow g^{\star})$
$N_{f} > 16.5$	Divergent $(g ightarrow\infty)$	Trivial $(g \rightarrow 0)$

- Theories with an infrared fixed point are said to lie in the conformal window. The gauge coupling never gets strong enough to trigger confinement and chiral symmetry breaking.
- N_f^c is unknown; perturbative study breaks down near the bottom of the window as the fixed-point coupling becomes strong. Previous lattice study indicates $8 \le N_f^c \le 12.^6$

 ⁶T. Appelquist, G. T. Fleming, ETN, Phys. Rev. D 79 p076010 (2009) ≡ ► ≡
 ∞ < ∞</td>

 Ethan Neil (Yale)
 Lattice χPT Beyond QCD
 July 9, 2009
 7 / 15

The Conformal Transition and χ PT

$$\begin{split} M_m^2/m &= 2B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_m + \frac{1}{N_f} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \\ F_\pi &= F \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_F - \frac{N_f}{2} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \\ \langle \overline{\psi}\psi \rangle &= F^2 B \left\{ 1 + \frac{2mB}{(4\pi F)^2} \left[\alpha_C - \frac{N_f^2 - 1}{N_f} \log \frac{2mB}{(4\pi F)^2} \right] \right\} \end{split}$$

In the window chiral symmetry is restored, so F → 0 and ⟨ψψ⟩ → 0 (i.e. F²B → 0.) But how do F and B evolve as we approach the transition? In particular, does ⟨ψψ⟩/F³ = B/F increase (condensate enhancement?) The "walking technicolor" scenario gives some hint of what to expect.

QCD is a one-scale theory, e.g. L_c , the confinement scale, corresponds to the gauge coupling g reaching a critical strength g_c .

Increasing N_f pushes the confinement scale to longer distances.

For large enough N_f , an IR-attractive fixed point appears, and the theory does not confine; chiral symmetry is restored. We can set the scale by e.g. the inflection point at L_I .

A "walking" theory can have both scales L_I and L_c . Condensates are enhanced by modes between L_I and L_c^a . Roughly, if $L_c \sim 1/F$ and $L_I \sim 1/B$, then the scale separation enhances $B/F = \langle \overline{\psi}\psi \rangle/F^3$.

^aAppelquist, Terning, Wijewardhana, Phys. Rev. D 44, 871 (1991)

χ PT and Lattice Simulation

- Our study: dynamical lattice simulation, measurement of spectrum, $\langle \overline{\psi}\psi\rangle$, f_{π} at various N_f . Use domain wall fermion discretization, which does the least damage to chiral symmetry.
- Results to be shown today: $N_f = 2$ and $N_f = 6$. $N_f = 2$ results shown are exploratory results from a $16^3 \times 32$ volume lattice at a coarse spacing $(am_{\rho} = 0.535(11).) N_f = 6$ are taken from $32^3 \times 64$ lattices with $am_{\rho} = 0.192(2)$.
- $N_f = 2$ fits are joint between all three chiral quantities $\langle \overline{\psi}\psi \rangle$ (C), f_{π} (F), M_{π}^2/m (M). $N_f = 6$ data admits a joint fit to M and C, but only if C has *no chiral log*. (c) More on this soon.

m_{π}^2 extrapolation

Good chiral fit in both cases (dropping the heaviest point at $N_f = 2$...slope here is strangely constant.) $B/F = \langle \overline{\psi}\psi \rangle / F^3 \sim 54$ or 55 (don't compare - different am_{ρ} !)

Ethan Neil (Yale)

f_{π} extrapolation

 $N_f = 6$ incompatible with other fits, which favor F > 0.02. Can force fit with large F intercept, but small B is required to suppress chiral log. No problems at $N_f = 2$.

Ethan Neil (Yale)

July 9, 2009 12 / 15

$\langle \overline{\psi}\psi angle$ extrapolation

 $\langle \overline{\psi}\psi \rangle$ highly linear, dominated by (unique!) contact term m/a^2 . At $N_f = 6$, things look consistent if we drop the chiral log...but we can't ignore it! Fitting with a log moves the intercept, destroying the joint fit.

Ethan Neil (Yale)

Conclusion

- $N_f = 6$ results seem to be inconsistent with NLO χ PT so far, although LO values obtained with pure linear extrapolation do look roughly consistent...chiral logs seem smaller than expected. Situation unclear so far.
- Our next steps: matched $N_f = 2$ (same volume, am_ρ as $N_f = 6$), lighter masses at $N_f = 6$ (partial quenching?), move on to $N_f = 8$ and beyond.
- Lots of ground to explore beyond QCD varying N_c , fermion representation. Lattice studies of chiral properties will need χ PT to make sense of results.
- Explicit knowledge of *N_f*-dependent NNLO chiral log coeffs would be helpful for fitting to lattice data, particularly as we add more mass points.

Conclusion

Lattice Strong Dynamics (LSD) Collaboration

J. C. Osborn Argonne National Laboratory

R. Babich, R. C. Brower, M. A. Clark, S. D. Cohen, C. Rebbi, D. Schaich Boston University

> M. Cheng, R. Soltz, P. M. Vranas Lawrence Livermore National Laboratory

> > J. Kiskis University of California, Davis

T. Appelquist, G. T. Fleming, E. T. Neil Yale University

http://www.yale.edu/LSD/