Baryons (and Mesons) on the Lattice

Robert Edwards Jefferson Lab

Chiral Dynamics July 2009

Nuclear Physics & Jefferson Lab

CD-3 JLab Receives DOE Approval to Start Construction of \$310 Million Upgrade

- Lab doubling beam energy to 12GeV
- Adding new experimental Hall

Spectroscopy

Spectroscopy reveals fundamental aspects of hadronic physics

- Essential degrees of freedom?
- Gluonic excitations in mesons exotic states of matter?
- Status
 - Can extract excited hadron energies & identify spins,
 - Pursuing full QCD calculations with realistic quark masses.
- New spectroscopy programs world-wide
 - E.g., BES III, GSI/Panda
 - Crucial complement to 12 GeV program at JLab.
 - Excited nucleon spectroscopy (JLab)
 - JLab GlueX: search for gluonic excitations.

Some Ground State Masses

Some of the ground state masses

Lowest m_{π} =156MeV, single a=0.0907fm. PAC-CS collab. PAC-CS, arXiv:0807.1661, PRD

Some Ground State Masses

Some of the ground state masses

Missing negative parity octet and decuplet - much more to do! Many of these states decay

BMW Collab, Science 322 (2008)

Sigma terms

SU(3) based chiral extrapolation [g_A fixed, SU(3) couplings/FRR

Sigma terms

$$\bar{\sigma}_{B_q} = \frac{m_q}{M_B} \frac{\partial M_B}{\partial m_q}$$

B	Mass~(GeV)	Expt.	$\bar{\sigma}_{Bl}$	$\bar{\sigma}_{Bs}$
N	0.939(19)(4)(2)	0.939	0.054(7)(2)(2)	0.020(11)(7)(3)
Λ	1.108(11)(10)(1)	1.116	0.0296(31)(5)(10)	0.138(11)(2)(2)
Σ	1.185(9)(2)(1)	1.193	0.0221(20)(7)(7)	0.176(11)(6)(2)
Ξ	1.321(9)(20)(0)	1.318	0.0095(7)(4)(0)	0.236(11)(4)(3)

Thomas/Young LHPC & PAC-CS results

$$\bar{\sigma}_{B_l} = 0.0427(30)$$

QCDSF

Excited states: anisotropy+operators+variational

Make lattice *anisotropic*

- Temporal spacing $a_t < a_s$ (spatial lattice spacing)
- High temporal resolution $\rightarrow\,$ Resolve noisy states
- Downside: must fine tune anisotropies: $a_t = a_s / \xi$

Major project within USQCD - Hadron Spectrum Collab.

Excited states: anisotropy+operators+variational

Extended operators

J^{PC} state: wavefunction

- Short distance: sufficient derivatives nonzero overlap
- Long distance: different structure

 $\overline{\psi}(x)$ Gamma's × Gauge covariant deriv $\psi(y) \rightarrow$ Lattice finite diff

Hadron spectrum calculation

$$C(t) = \langle 0 | \Phi'(t) \Phi(0) | 0 \rangle$$

$$C(t) = \sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}}t} \langle 0 | \Phi'(0) | \mathfrak{n} \rangle \langle \mathfrak{n} | \Phi(0) | 0 \rangle$$

e.g. pseudoscalars can be 'made' with

$$\frac{\overline{\psi}\gamma^{5}\psi}{\epsilon_{ijk}\,\overline{\psi}\gamma^{j}\gamma^{k}(\partial^{i}-A^{i})\psi} \\
\frac{\epsilon_{ijk}\,\overline{\psi}\gamma^{i}\psi\,F^{jk}}{\vdots}$$

Overlap onto tower of pseudoscalar states

Some state \rightarrow optimal linear combination of operators

$$\Omega_{\mathfrak{n}} = v_1^{\mathfrak{n}} \Phi_1 + v_2^{\mathfrak{n}} \Phi_2 + \dots$$

Finite basis: use variational solution

 $\square \clubsuit \Omega_2$

Variational Method

Orthogonality needed for near degenerate states

Why all this stuff?

Orthogonality needed for near degenerate states

Orthogonality

Determining spin on a cubic lattice?

Spin reduction & (re)identification

Method: Check if converse is true

More spectrum

arXiv:0707.4162 & 0902.2241 (PRD)

Radiative decays

Project onto excited states:

compute decays

PRL (2007), arXiv:0707.4162 & 0902.2241 (PRD)

Exotic spectrum & decay

Resonances in finite volume: cartoon

What does QCD vector spectrum look like?

in *infinite volume*, a continuous spectrum of $\pi\pi$ states $E(p) = 2\sqrt{m_{\pi}^2 + p^2}$

resonance embedded in a continuum of multi-particle states

$$C(\tau) = \int \! dE \, W(E) \, e^{-E\tau}$$

in *finite volume*, a discrete spectrum of states

$$C(\tau) = \sum_{N} W_{N} e^{-E_{N}\tau}$$

non-interacting two-particle states have known energies

$$E(p) = 2\sqrt{m_{\pi}^2 + n\left(\frac{2\pi}{L}\right)^2}$$

deviation from free energies depends upon the interaction and contains information about the scattering phase shift

 $\delta E(L) \leftrightarrow \delta(E)$: Lüscher method

Light & strange quarks

Single particle operators only

J++		up to three covariant derivatives - operators have continuum overlap up to spin-4
		J=0 J=1
		J=2 J=3 J=4
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	arXiv:0905.2160

Light & strange quarks

Multi-particles?

Why no coupling?

$$C_{ij}(t) = \langle 0 | \Phi_i(t) \Phi_j(0) | 0 \rangle = \langle 0 | \Phi_i(0) e^{-Ht} \Phi_j(0) | 0 \rangle$$
$$= \sum_{N_{\text{QCD}}} \langle 0 | \Phi_i(0) | N_{\text{QCD}} \rangle \langle N_{\text{QCD}} | \Phi_j(0) | 0 \rangle e^{-m_{N_{\text{QCD}}} t}$$

consider a simple Fock state argument

$$\Phi_{\bar{\psi}\psi}(0) = \bar{\psi}_{t=0} \Gamma f(\overleftarrow{D}) \psi_{t=0}$$
$$\langle N | \Phi_{\bar{\psi}\psi} | 0 \rangle \sim \langle N | a^{\dagger} b^{\dagger} | 0 \rangle$$

suppose **N** is a $q \overline{q}$ Fock state

$$\left\langle N \left| \Phi_{\bar{\psi}\psi} \right| 0 \right\rangle \neq 0$$

suppose **N** is a $MM=qar{q}qar{q}$ Fock state

$$N \left| \Phi_{\bar{\psi}\psi} \right| 0 \right\rangle = 0$$

Nucleon spectrum (Experimental)

NP2012 milestone: Spectrum & E&M transitions up to Q² = 7 GeV²

- Challenges/opportunities:
 - Compute excited energies
 - Compute decays

N_f=2 Nucleon Spectrum via Group Theory

HadSpec 2009

N_f=2 Nucleon Spectrum via Group Theory

N_f=2 Nucleon spectrum

• Future:

Jefferson Lab

- As expected, most states decaying
- Multiple volumes for decay analysis

N_f=2+1 Nucleon spectrum

N_f=2+1 Delta spectrum

Delta (decay)

 $\Delta (1232) \quad \text{(p-wave). Scattering phase (eff. range expansion)} \\ \frac{k^3}{E} \cot \delta_{3/21}(k) = \frac{24\pi}{g_{\Delta N\pi}^2} \left(m_{\Delta}^2 - E^2 \right)$

Here

$$E = \sqrt{k^2 + m_{\pi}^2} + \sqrt{k^2 + m_N^2}, \quad m_{\Delta} = \sqrt{k_{\Delta}^2 + m_{\pi}^2} + \sqrt{k_{\Delta}^2 + m_N^2}$$
$$\Gamma_{\Delta} = \frac{g_{\Delta N\pi}^2}{6\pi} \frac{k_{\Delta}^3}{m_{\Delta}^2}$$

Free case:

 $k = \frac{2\pi |\vec{n}|}{r}, \quad \vec{n} \in \mathbb{N}^3$

Interacting case:

$$\delta_{11}(\mathbf{k}) = \arctan\left\{\frac{\pi^{3/2}q}{\mathcal{Z}_{00}(1,q^2)}\right\} \mod \pi \ , \quad q = \frac{\mathbf{k}I}{2\pi}$$

Lüscher; Weise; Bernard, Meißner, Rusetsky (2007)

Energy levels

$$\frac{k^3}{E} \cot \delta_{3/21}(k) = \frac{24\pi}{g_{\Delta N\pi}^2} \left(m_{\Delta}^2 - E^2 \right)$$

Physical m_{π}, m_{Δ} and Γ_{Δ}

Jefferson Lab

Thomas Jefferson National Accelerator Facility

QCDSF

Phase shift

$$\frac{k^3}{E} \cot \delta_{3/21}(k) = \frac{24\pi}{g_{\Delta N\pi}^2} \left(m_{\Delta}^2 - E^2 \right)$$

 $m_{\pi} = 250 \ 150 \ \text{MeV}$

Energy levels (+lattice results @ E, m_{π} & L)

Jefferson Lab

QCDSF

8

Chiral fit: $m_\Delta = m_\Delta^0 - 4c_1m_\pi^2 + c_2m_\pi^3$

Bernard 2007, QCDSF 2009

Extensions

Go beyond isolated states, e.g.:

- $\left[\frac{1}{2}\right]^{+} P_{11}(1440) \rightarrow N\pi$ or $\Delta\pi$
- [$\frac{1}{2}$] S₁₁(1535) \rightarrow N π or N η

 \rightarrow multi-channel finite-V analysis

Strange Quark Baryons

Strange quark baryon spectrum poorly known

Future:

Narrow widths: easy(er) to extract (?) •

Current and future work

- Some efforts underway (HadSpec)
 - Strange quark spectrum (hybrids) and radiative transitions
 - Excited light baryon spectrum (N, Δ , Ξ , Σ , Λ)
 - Radiative transitions for $P_{11}(1440)$, $S_{11}(1535)$, $D_{13}(1520)$
 - Q² <~ 5 GeV²
 - Need to disentangle decay states:
 - Two-meson states, I=1 & 0
 - Meson-baryon

Lattice can handle excited states Anisotropy+variational method allows for high lying states Lattice can handle decays (simple ones so far) Example, $\rho \& \Delta$ (QCDSF)

- Early stages
- Start at heavy masses: have some "elastic scattering"
- Will need multi-particle operators

Message:

Needed is multi-channel finite-volume analysis for inelastic scattering

Rho decay

Rho decay

QCDSF

Scaling of costs

• Isotropic: $m_{\pi} L = 4.2$

