Nuclear Forces from Lattice QCD

T. Hatsuda (Univ. Tokyo)

HAL QCD Collaboration

(Hadrons to Atomic Nuclei Lattice QCD Collaboration)

S. Aoki, T. Doi, T. Inoue, K. Murano, K. Sasaki

T. Hatsuda, Y. Ikeda, N. Ishii

H. Nemura

(Univ. Tsukuba)

(Univ. Tokyo)

(Tohoku Univ.)

Chiral Dynamics 09, Bern, July 7, 2009

Hadron masses on the lattice

PACS-CS gauge configurations(2+1 flavors) Phys. Rev. D79(2009)034503

Methods to extract NN interaction from LQCD

Luscher, Nucl. Phys. B354 (1991) 531

[1] <u>Temporal</u> correlation : $E_{NN}(L) \rightarrow NN$ phase shift

$$\frac{2\mathcal{Z}_{00}(1,q)}{L\pi^{1/2}} = k \cot \delta_0(k)$$

• quenched QCD: CP-PACS Coll. (1995)

• full QCD: NPLQCD Coll. (2006-)

[2] <u>Spatial</u> correlation : BS wave function

BS wave function \rightarrow NN potential \rightarrow observables

$$(E - H_0)\phi(\mathbf{r}) = \int U(\mathbf{r}, \mathbf{r}')\phi(\mathbf{r}')d\mathbf{r}'$$

half off-shell T-matrix

π-π system : CP-PACS Coll. (2005)
 NN system (quenched QCD) : Ishii, Aoki & T.H., PRL 99, 022001 (2007).
 NN, YN systems (full QCD): HAL QCD Coll. (2008-)

(i) Take your favorite interpolating operator

e.g.
$$N(x) = \epsilon_{abc}q^a(x)q^b(x)q^c(x)$$

← observables do not depend on the choice Haag, Nishijima, Zimmermann (1958)

(ii) Calculate the equal-time BS amplitude

$$\phi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) | 6q \rangle$$

(iii) Define the potential

$$(E - H_0)\phi(\vec{r}) = \int U(r, \vec{r'})\phi(\vec{r'})d^3r'$$

(iv) Derivative expansion

$$U(\vec{r},\vec{r'}) = V(\vec{r},\nabla)\delta^3(\vec{r}-\vec{r'})$$

$$V(\vec{r}, \nabla) = V_{\rm C}(r) + S_{12}V_{\rm T}(r) + \vec{L} \cdot \vec{S} V_{\rm LS}(r) + \{V_{\rm D}(r), \nabla^2\} + \cdots$$

Okubo-Marshak (1958)

← successive determination using BS amplitudes for different E

 \rightarrow calculate observables (phase shifts, binding energies etc)

HAL setup

	Quenched QCD	Full QCD (N _f =2+1)
Configurations	BlueGene/L@KEK (Iwasaki) # of config. ~ 2000	PACS-CS@Tsukuba (Iwasaki, Wilson+clover) # of config. ~ 500
L (spatial size)	4.4 fm	2.9 fm
a (lattice spacing)	0.14 fm	0.091 fm
m _π	380 MeV, 529 MeV, 731 MeV	301 MeV, 415 MeV, 568 MeV, 700 MeV

Exploratory study in quenched QCD

	Quenched QCD	Full QCD (N _f =2+1)
Configulations	BlueGene/L@KEK (Iwasaki) # of config. ~ 2000	PACS-CS@Tsukuba (Iwasaki, Wilson+clover) # of config. ~ 500
L (spatial size)	4.4 fm	2.9 fm
a (lattice spacing)	0.14 fm	0.091 fm
m _π	380 MeV, 529 MeV, 731 MeV	301MeV, 415 MeV, 568 MeV, 700 MeV

Central potential V_c(r) from ϕ (r) at E ~ 0 (m_{π}=0.53 GeV)

Equal-time BS amplitude

Central potential V_c(r) from ϕ (r) at E ~ 0 (m_{π}=0.53 GeV)

 ${}^{1}S_{0}, {}^{3}S_{1}$

velocity dependence of V

1. velocity-dep. terms can be determined from E-dependence of ϕ (r)

2. E-dep. turns out to be small at low energies in our choice of N(x)

Quark mass dependence of $V_c(r)$ in 1S_0

$^{1}S_{0}$ phase shift from V_c(r)

NN tensor force $V_T(r)$ and its quark-mass dependence

$$\left[-\frac{1}{2\mu}\vec{\nabla}^{2} + V_{C}(\vec{r}) + V_{T}(\vec{r})S_{12}\right]$$

$$\begin{pmatrix} \phi(\vec{r}; {}^{3}S_{1}) \\ \phi(\vec{r}; {}^{3}D_{1}) \end{pmatrix} = E \begin{pmatrix} \phi(\vec{r}; {}^{3}S_{1}) \\ \phi(\vec{r}; {}^{3}D_{1}) \end{pmatrix}$$

fit: π+ρ with gaussian form-factors

Full QCD

	Quenched QCD	Full QCD (N _f =2+1)
Config.	BlueGene/L@KEK (Iwasaki) # of config. ~ 2000	PACS-CS@Tsukuba (Iwasaki, Wilson+clover) # of config. ~ 500
L (spatial size)	4.4 fm	2.9 fm
a (lattice spacing)	0.14 fm	0.091 fm
m _π	380 MeV, 529 MeV, 731 MeV	301MeV, 415 MeV, 568 MeV, 700 MeV

$V_{C}(r)$ and $V_{T}(r)$ in full QCD (m_n=570MeV, L=2.9 fm)

ΛN in full QCD (m_n=415 MeV, L=2.9 fm)

- Weaker repulsive core than NN
- Stronger spin-dependence than NN
- Weaker tensor force than NN

NN scattering length (Kuramashi plot)

Kuramashi, Prog. Theor. Phys. Suppl. 122 (1996) 153 [hep-lat/9510025]

OBEP + lattice hadron mass

 \leftarrow Narrow unitary region \rightarrow

Scattering lengths in full QCD

Summary

- 1. Nuclear force from LQCD
 - BS amplitude \rightarrow NN, YN, YY potentials \rightarrow observables

- 2. NN force in <u>quenched</u> QCD : good "shape"
 - repulsive core, intermediate attraction, tensor force

3. <u>Hyperon</u> forces :

- ΞN , ΛN , ΣN , $\Lambda \Lambda$ undrerway
 - \rightarrow inputs to hyper nuclear physics

O Full QCD with m_{π} =140 MeV is our ultimate goal

- <u>current</u> : PACS-CS config. (N_f=2+1) with L=2.9fm & m_{π} = 156-701 MeV
- in 1-2 years: PACS-CS config. (N_f=2+1) with L=5.8fm & $m_{\pi} = 140$ MeV
- in 5 years: new config. on 20 Pflops machine (2011-)

O Current and Future targets of HAL QCD Coll.

- tensor force and deuteron binding
- origin of the repulsive core
- LS force
- YN and YY forces
- 3N forces
- light nuclei from lattice QCD inputs
- relation to EFT

Some References

- O NN force in quenched QCD: Ishii, Aoki & T.H., Phys. Rev. Lett. 99 (2007) 022001 [nucl-th/0611.096].
- O Introductory review: Aoki, T.H. & Ishii, Comput. Sci. Disc. 1 (2008) 015009 [arXiv:0805.2462 [hep-ph]].
- O YN force in quenched QCD: Nemura, Ishii, Aoki & T.H., Phys. Lett. B673 (2009) 136 [arXiv:0806.1094 [nucl-th]].
- O NN force in full QCD: Ishii, Aoki & T.H. (for PACS-CS Coll.), arXiv: 0903.5497 [hep-lat]
- O YN force in full QCD: Nemura, Ishii, Aoki & T.H. (for PACS-CS Coll.), arXiv: 0902.12251 [hep-lat]

Backup slides

NN phase shifts

Stoks et al., Phys.Rev. C48 (1993) 792

Phenomenological nuclear force below pion threshold NN phase shifts → NN potential

$$V(r) = V_{\mathsf{C}}(r) + S_{12} V_{\mathsf{T}}(r) + \mathbf{L} \cdot \mathbf{S} V_{\mathsf{LS}}(r) + O(\nabla^2) + \cdots$$

Okubo & Marshak (1958)

Intermediate attraction Intermediate attraction

- Short range repulsion
 - \rightarrow nuclear stability

Strong tensor force

 \rightarrow deuteron binding

Strong LS force

 \rightarrow p-wave neutron superfluidity

3-body forces

→ nuclear binding/stability max. mass of N-stars

Measurement of ϕ (**r**) (s-wave)

$$C_{4}(\mathbf{r};t) = \langle N_{1}(\mathbf{x},t)N_{2}(\mathbf{y},t)\mathcal{J}_{1}^{\dagger}(0)\mathcal{J}_{2}^{\dagger}(0)\rangle$$

= $\sum_{n} \langle 0|N_{1}(\mathbf{x})N_{2}(\mathbf{y})|n\rangle A_{n} e^{-E_{n}t} \longrightarrow \phi(\mathbf{r})A_{0}e^{-E_{0}t}$

+ all possible combinations

velocity-dependece of $V_{C,T}(r)$

Next Generation National Supercomputing Facility 20 Pflops @ Kobe (2011 partial operation, 2012 full operation)

http://www.nsc.riken.jp/index_j.html

- Life
- Nano
- Energy
- Environment
- Industry
- Basic science

