Prospects for a Primakoff measurement of the pion polarisability at COMPASS

Jan Friedrich

TU München / Uni Erlangen

for the COMPASS collaboration

Chiral Dynamics 2009 Bern, July 7

直 ト イヨト イヨト

Pion polarisability polarisability effect on the cross section

Goal of the COMPASS Primakoff (*pion*) program: Measure exclusive *pion-photon* reactions

$$\pi + \gamma \rightarrow \begin{cases} \pi + \gamma \\ \pi + \pi^{0} \\ \pi + \pi^{0} + \pi^{0} \\ \pi + \mathbf{n} \cdot \pi^{\pm} \end{cases}$$

Compton reaction neutral pion production double pion production resonances, exotics?

伺下 イヨト イヨト

also accessible: Kaon-induced reactions $K + \gamma \rightarrow \cdots$

Pion polarisability polarisability effect on the cross section

COMPASS at the CERN SPS

Jan Friedrich

Primakoff measurement at COMPASS

Pion polarisability polarisability effect on the cross section

COMPASS at the CERN SPS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS

SPS

- Fixed-target experiment with broad physics programme
- Data taking since 2002

LHC

- secondary π, K, \dots : $2 \cdot 10^7 s^{-1}$
- tertiary muons: $4 \cdot 10^7 s^{-1}$

Jan Friedrich

Primakoff measurement at COMPASS

Pion polarisability polarisability effect on the cross section

COMPASS Experiment – Setup

200

Pion polarisability polarisability effect on the cross section

COMPASS Experiment – Setup

Pion polarisability polarisability effect on the cross section

Physics of the Compton reaction

 $\pi + \gamma \rightarrow \pi + \gamma$

Leading deviation from pointlike particle \leftrightarrow e.m. polarisability

(4 同) (4 日) (4 日)

The Primakoff program

How to measure pion Compton scattering? Outlook Pion polarisability polarisability effect on the cross section

Compton cross section

- The polarisabilities α_{π} and β_{π} enter
 - with increasing s
 - as $lpha_{\pi} + eta_{\pi}$ in forward angles (small, but rel. weight $\sim s^2$)
 - as $\alpha_{\pi} \beta_{\pi}$ in backward angles

同下 イヨト イヨト

Pion polarisability polarisability effect on the cross section

Polarisability effect (LO ChPT values)

Jan Friedrich Primakoff measurement at COMPASS

Э

Pion polarisability polarisability effect on the cross section

Polarisability effect (NLO ChPT values)

Jan Friedrich Primakoff measurement at COMPASS

Pion polarisability polarisability effect on the cross section

Polarisability effect (NLO ChPT, wrong sign $\alpha_{\pi} + \beta_{\pi}$)

Jan Friedrich Primakoff measurement at COMPASS

embedding the process Primakoff technique and kinematics Q^2 distribution

How to scatter photons on pions?

Jan Friedrich Primakoff measurement at COMPASS

DQ P

embedding the process Primakoff technique and kinematics Q^2 distribution

How to scatter photons on pions?

Jan Friedrich Primakoff measurement at COMPASS

nar

embedding the process $\ensuremath{\mathsf{Primakoff}}$ technique and kinematics Q^2 distribution

Primakoff technique

requires:

- high energy (unstable particle) beam
- sufficient luminosity, high rate DAQ (small cross section, large background contributions)
- high spatial precision $\longrightarrow COMPASS!$

直 ト イヨト イヨト

embedding the process $\ensuremath{\mathsf{Primakoff}}$ technique and kinematics Q^2 distribution

How are *relevant* and *kinematical* quantities related?

- recoil: negligible energy, small momentum Q^2
- θ_{γ} and θ_{π} related for vanishing Q^2
- Minimum momentum transfer $Q_{\min} = \frac{s m_{\pi}^2}{2p}$

Image: A Image: A

embedding the process Primakoff technique and kinematics Q^2 distribution

Mandelstam $\{s,t\} \leftrightarrow \text{Laboratory } \{E_{\gamma}, \theta_{\pi}\}$

Jan Friedrich Primakoff measurement at COMPASS

990

embedding the process Primakoff technique and kinematics Q^2 distribution

Key experimental signature: $Q^2 \approx 0$

COMPASS 2004 n⁻ data

Jan Friedrich Primakoff measurement at COMPASS

embedding the process Primakoff technique and kinematics Q^2 distribution

Caveat's on the Q^2 distribution

 High resolution is only achieved for transverse components, so only Q_T is determined (convoluted with the resolution)

$$\begin{array}{ll} Q \approx Q_{\min} & Q \rightarrow Q_L \text{ and } Q_T \rightarrow 0 \ (\sigma \text{ large!}) \\ Q \gg Q_{\min} & Q \rightarrow Q_T \gg Q_L \approx Q_{\min} \end{array}$$

(which justifies the method to neglect Q_L)

• The Weizsäcker-Williams (Pomeranshuk) factorization

$$\frac{d\sigma}{ds\,dt\,dQ^2} = \frac{\alpha Z^2}{\pi(s-m_\pi^2)} \cdot \frac{Q^2 - Q_{\min}^2}{Q^4} \cdot \frac{d\sigma_{\pi\gamma}}{dt}$$

is an approximation with limited validity

・ 同 ト ・ ヨ ト ・ ヨ ト

embedding the process Primakoff technique and kinematics Q^2 distribution

Beyond equivalent photons: exact cross section

Equivalent photons vs. exact calc. (N. Kaiser, TUM) \rightarrow few % !

Jan Friedrich Primakoff measurement at COMPASS

nar

Spares

Summary & Outlook

- The COMPASS Primakoff measurement accesses the full kinematical range of pion Compton scattering to disentangle the relevant ChPT parameters
 - polarisabilities α_{π} , β_{π}
 - 1- and 2-loop effects
 - higher-order polarisabilities
- Effect of the exact Q^2 distribution
 - background determination
 - polarisability extraction
 - muon control data: include higher-order effects
- Go for new data
 - preparations for taking data in 2009 ongoing (still some work on hardware required)
 - $\bullet\,$ longer term: full Primakoff run \geq 30 days

(4月) (4日) (4日)

Spares

Approximate statistical errors of 3 days data (2004)

only statistical errors shown

Jan Friedrich Primakoff measurement at COMPASS

Spares

Prospected statistical errors for future run

only statistical errors shown

Jan Friedrich Primakoff measurement at COMPASS

3

990

$\gamma\gamma \to \pi\pi$ and the pion polarisability

M.R. Pennington in the 2nd DA Φ NE Physics Handbook, "What we learn by measuring $\gamma\gamma \rightarrow \pi\pi$ at DA Φ NE":

All this means that the only way to measure the pion polarisabilities is in the Compton scattering process near threshold and not in $\gamma\gamma \rightarrow \pi\pi$. Though the low energy $\gamma\gamma \rightarrow \pi\pi$ scattering is seemingly close to the Compton threshold (...) and so the *extrapolation* not very far, the dominance of the pion pole (...) means that the energy scale for this continuation is m_{π} . Thus the polarisabilities cannot be determined accurately from $\gamma\gamma$ experiments in a model-independent way and must be measured in the Compton scattering region.

イロト イポト イヨト イヨト

Spares

Polarisability effect - Serpukhov values

Jan Friedrich Primakoff measurement at COMPASS

Spares

Q^2 and Q in detail

Trick:
$$Q^2 \longrightarrow Q$$
:

$$rac{Q^2-Q_{\min^2}}{Q^4} imes \textit{RESOLV}(Q^2) \qquad (\sigma_{\textit{RESOLV}}=5~\text{MeV})$$

Jan Friedrich Primakoff measurement at COMPASS

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

E

990

Spares

Radiative corrections for Primakoff - Status

- e.m. corrections for $\pi\gamma \to \pi\gamma$ subprocess established
- Chiral loop corrections (à la Unkmeir, Scherer,...) adapted to Primakoff kinematics
- Influence of polarisability terms studied (small)
- Uncertainties on high-Z/atomic f.f. effects
- Theoretical base for understanding of radiative tail (and q² distribution) numerical evaluation on the way

・ 戸 ト ・ ヨ ト ・ ヨ ト ・