Chiral EFT for nuclear forces with Δ(1232) degrees of freedom

Hermann Krebs

FZ Jülich & Universität Bonn

July 6, Chiral Dynamics 2009, Bern

With V. Bernard, E. Epelbaum, U. Meißner

Outline

- Nuclear forces in chiral EFT
- The role of $\Delta(1232)$ -isobar
 - Summary & Perspectives

Nucleon-Nucleon forces

Phenomenological description by Meson-exchange

Boson-Exchange Models as basis for NN-force
 Highly sophisticated phen. NN potentials
 Excelent description of many experimental data
 Connection to QCD is unclear

QCD Interpretation of NN forces

NN force as residual strong interaction between handrons

Chiral EFT Interpretation of NN forces

- Model independent treatment
- At low energies NN force dominated by Goldstone Boson dynamics + short range int.
- Systematic perturbative description of few nucleon potentials
- Underlying QCD symmetries implemented by construction

Weinberg's scheme for NN

Weinberg, Nucl. Phys. B 363: 3 (1991)

No perturbative description for bound states

Construct effective potential perturbatively

Solve Lippmann-Schwinger equation nonperturbatively

Nucleon-nucleon force up to N³LO

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; Epelbaum et al. '98, '03; Kaiser '99-'01; Higa et al. '03; ...

+ 1/m and isospin-breaking corrections...

Deuteron binding energy & asymptotic normalizations A_{s} and η_{d}

	NLO	$N^{2}LO$	N ³ LO	Exp
$\begin{array}{c} E_{\rm d} \; [{\rm MeV}] \\ A_S \; [{\rm fm}^{-1/2}] \\ \eta_{\rm d} \end{array}$	$\begin{array}{c} -2.171\ldots -2.186\\ 0.868\ldots 0.873\\ 0.0256\ldots 0.0257\end{array}$	$\begin{array}{c} -2.189\ldots -2.202 \\ 0.874\ldots 0.879 \\ 0.0255\ldots 0.0256 \end{array}$	$\begin{array}{c} -2.216\ldots -2.223\\ 0.882\ldots 0.883\\ 0.0254\ldots 0.0255\end{array}$	$\begin{array}{r} -2.224575(9) \\ 0.8846(9) \\ 0.0256(4) \end{array}$

Entem & Machleidt '03; Epelbaum, Glöckle & Meißner '05

Three-nucleon forces

Three-nucleon forces in chiral EFT start to contribute at NNLO

U. van Kolck '94; Epelbaum et al. '02; Nogga et al. '05; Navratil et al. '07

$$\begin{array}{c|c} & & & \\ \hline \\ E & & D & \\ \hline \\ D & & \\ \hline \\ c_{1,3,4} \end{array} \longrightarrow$$

 $c_{1,3,4}$ from the fit to πN -scattering data

D, E from ${}^{3}H, {}^{4}He, {}^{10}B$ binding energy + coherent nd scattering length

Three-nucleon forces at N³LO

Rich isospin-spin-orbit structure of N³LO 3NF

Nd elastic scattering

Deuteron break-up

- Promising NNLO results for Nd elastic scattering
- Satisfactory A, description related to overprediction of triplet P-waves
- Systematic overestimation of deuteron break-up data
- Hope for improvement at N³LO

Delta-less effective potential

- Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} m_N = 293 \text{ MeV}$
- Small scale expansion: $Q \sim M_{\pi} \sim \Delta \ll \Lambda_{\chi}$ (Hemmert, Holstein & Kambor '98)

The subleading contribution is bigger than the leading one!

Expectation from inclusion of Δ explicitely more natural size of LECs
better convergence
applicability at higher energies

Few-nucleon forces with the Delta

Isospin-symmetric contributions

	Two-nucleon force		Three-nucleon force	
	riangle -less EFT	\triangle -contributions	∆–less EFT	∆ -contributions
LO	<u></u> +↓ ×			
NLO	부 석 척 ᄪ X	Image: Contract of the second seco		↓_↓-↑
NNLO	•<1	<pre></pre>	¥ -+-+ ₩	

Delta excitations and the three-nucleon force

Epelbaum, H.K., Meißner, Nucl. Phys. A806 (2008) 65

→ The LO NNN∆ contact interaction $\overline{T}_i^{\mu}N\overline{N}S_{\mu}\tau^iN$ + h.c. vanishes due to the Pauli principle the LECs *D* and *E* are not saturated by the delta.

■ No contributions from subleading 2π –exchange due to ∂^0 at the $b_3 + b_8$ vertex.

. The entire effect of the Δ is given by a partial shift of the N²LO TPE 3NF to NLO...

Results of the fit

- Improved description of P-wave parameters when Δ is included
- Strongly reduced values for c_i
- Resulting c_i depend strongly on h_A while the thresh. param. do not

S- and P-wave threshold parameters

	Q^2 , no Δ	Q^2 fits 1, 2	EM98
a_{0+}^+	0.41	0.41	0.41 ± 0.09
b_{0+}^+	-4.46	-4.46	-4.46
a_{0+}^{-}	7.74	7.74	7.73 ± 0.06
b_{0+}^{-}	3.34	3.34	1.56
a_{1-}^{-}	-0.05	-1.32	-1.19 ± 0.08
a_{1-}^+	-2.81	-5.30	-5.46 ± 0.10
a_{1+}^{-}	-6.22	-8.45	-8.22 ± 0.07
a_{1+}^+	9.68	12.92	13.13 ± 0.13

NN potential with explicit Δ

 $V_{\rm eff} = V_C + W_C \vec{\tau_1} \cdot \vec{\tau_2} + [V_S + W_S \vec{\tau_1} \cdot \vec{\tau_2}] \vec{\sigma_1} \cdot \vec{\sigma_2} + [V_T + W_T \vec{\tau_1} \cdot \vec{\tau_2}] (3 \vec{\sigma_1} \cdot \hat{r} \vec{\sigma_2} \cdot \hat{r} - \vec{\sigma_1} \cdot \vec{\sigma_2})$

Much better convergence in all potentials

$^{3}F_{3}$ partial waves up to NNLO with and without Δ

Δ-mass splitting in chiral EFT

Epelbaum, H.K., Meißner, Nucl. Phys. A806 (2008) 65 Tiburzi, Walker-Loud, Nucl. Phys. A 764 (2006) 274 (strong splitting)

Solution, PDG's recommended value for the average mass:

$$m_{\Delta} = \frac{1}{4} \left(m_{\Delta^{++}} + m_{\Delta^{+}} + m_{\Delta^{0}} + m_{\Delta^{-}} \right) = \tilde{m}_{\Delta} + \frac{1}{4} \delta m_{\Delta}^{2} = 1231 \dots 1233 \,\mathrm{MeV}$$

On the other hand: $m_{\Delta} = 1233.4 \pm 0.4 \text{ MeV}$ (Arndt et al. '06) use: $m_{\Delta} = 1233 \text{ MeV}$

$$\implies \tilde{m}_{\Delta} = 1233.4 \pm 0.7 \text{ MeV}, \qquad \delta m_{\Delta}^1 = -5.3 \pm 2.0 \text{ MeV}, \qquad \delta m_{\Delta}^2 = -1.7 \pm 2.7 \text{ MeV}$$

Alternatively, use $m_{\Delta^{++}}/m_{\Delta^0}$ & the QM relation: $m_{\Delta^+} - m_{\Delta^0} = m_p - m_n$ (Rubinstein et al. '67) $\tilde{m}_{\Delta} = 1232.7 \pm 0.3 \text{ MeV}, \qquad \delta m_{\Delta}^1 = -3.9 \text{ MeV}, \qquad \delta m_{\Delta}^2 = 0.3 \pm 0.3 \text{ MeV}$

Isospin-breaking NN potential Epelbaum, H.K., Meißner, Phys. Rev. C77 (2008) 034006

2 π – exchange contributions with expicit $\Delta V = (\tau_1^3 + \tau_2^3) \left[V_C^{\text{III}} + V_S^{\text{III}} \vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{\text{III}} \vec{\sigma}_1 \cdot \vec{q} \cdot \vec{\sigma}_2 \cdot \vec{q} \right] + \dots$ Charge-symmetry-breaking 2π -exchange potential Δ-full EFT, LO Δ-less EFT, NLO Similar $\sim \delta m$ contr. to $\tilde{V}_{\rm S,T}^{\rm III}$ 200 δm in the Δ -less and Δ -full EFT 5 100 full δm^1_{Δ} Sizeable deviation in $\sim \delta m$ -100 -5 -200 -200 contr. for $\tilde{V}_{\rm C}^{\rm III}$ 60 1,5 1,5 $\widetilde{V}_{T}^{III}\left(r\right)$ [keV] Strong cancelations between 20 0.5 0.5 $\sim \delta m$ and $\sim \delta m_{\Delta}^{1}$ terms 0 -0,5 -20 -0.5 -20 20 20 $\widetilde{V}_{S}^{III}(r)$ [keV] **Big contributions beyond** 0 the subleading corrections -1 -20 -1 in the Δ -less EFT

1 1,2 1,4

1,6 1.8 2 2,2 2,4 2,6 2,8 3

r [fm]

1 1,2 1,4

1.6 1,8 2 2.2 2,4 2.6 2,8 3

r [fm]

- Quantitative description of few-nucleon forces within chiral EFT
- Promising results for few-nucleon dynamics
- Setter convergence of nuclear forces if Δ -isobar is included explicitely

Perspectives

