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Introduction

Chiral Perturbation Theory (χPT) is
Effective Field Theory of QCD at low energies

LQCD

E<<Mρ−→ Leff

◮ Exploits the chiral symmetry of QCD and its spontaneous breaking ;

◮ Leff is expressed in terms of the Goldstone bosons:

SU(2) =⇒ pions, SU(3) =⇒ pions, kaons, eta ;

◮ Includes external sources v, a, p, s ;

◮ Leff is a series built according to the chiral power-counting ;



Introduction

L eff = L 2 + L 4 + L 6 + . . .

L 2 =⇒ Weinberg 1979

L 4 =⇒ Gasser, Leutwyler 1984,1985

L 6 =⇒ Fearing, Scherer 1996; Bijnens, Colangelo, Ecker 1999,2000

L 2 =
F2

4
< uµuµ + χ+ >

uµ contains Goldstone bosons coupled with external vector and axial fields

χ+ contains Goldstone bosons coupled with external scalar and pseudoscalar fields
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Introduction

◮ Leff contains a number of coupling constants, called
Low Energy Constants (LECs) which are not fixed by chiral symmetry ;

◮ LECs are independent of the light quark masses mu,d.
They describe the influence of heavy degrees of freedom ;

◮ Calculations with Leff give an expansion in quark masses and
momenta:

Chiral perturbation theory (χPT)

Gasser, Leutwyler 1984,1985

◮ χPT2 gives an expansion around mu = md = 0 whereas
χPT3 - around mu = md = ms = 0 ;



Introduction

◮ At small external momenta, these two expansions should be
equivalent =⇒ one can express the LECs in χPT2 through the ones
in χPT3 and the strange quark mass ms ;

◮ Such relations give an additional information on the values of LECs ;

◮ The procedure of findings the relations between SU(2) and SU(3)
LECs is called as ”matching” ;

◮ The matching at one-loop level was done by
(Gasser, Leutwyler 1985)

◮ The matching at two-loop level was done by
(Gasser, Haefeli, Ivanov, Schmid 2007,2009)



Example of matching at one-loop

〈π+(p′) | 1
2
(ūγµu − d̄γµd)|π+(p)〉 = (p + p′)µFV(t) ; t = (p′ − p)2 ,

In the chiral limit mu = md = 0:

2 flavours : FV,2(t) = 1 +
t

F2
Φ(t, 0; d) − ℓ6t

F2

3 flavours : FV,3(t) = 1 +
t

F2
0

ˆ

Φ(t, 0; d) + 1
2
Φ(t, MK; d)

˜

+
2L9t

F2
0

π p′

p

K
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Drop terms of order ”t” and higher in the expansion of Φ(t, MK; d).
It is seen that FV,3(t) reduces to FV,2(t) if we put F = F0 and

−ℓ6 = 2 L9 +
1

2
Φ(0, MK, d).
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1

2
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At d = 4, this equation gives the relation between renormalized LECs

ℓr
6(µ) = −2Lr

9(µ) +
1

192π2
(ln B0ms/µ2 + 1).

Gasser, Leutwyler (85)



Matching at two loops

◮ One can get the matching for SU(2)-LECs at order p2, p4 from
available two-loop calculations of the various matrix elements in
χPT3

◮ But the matching for SU(2)-LECs at order p6 in this manner requires
a tremendous amount of two-loop calculations in χPT2,3.

◮ Therefore, we have developed a generic method based on the path
integral formulation of χPT.



The idea of method

◮ Reduce χPT3 to χPT2 by imposing two–flavor limit restrictions:

* the external sources of χPT3 are restricted to the two–flavor subspace

* put mu = md = 0, since the LECs of χPT are independent of mu,d

* restrict by small external momenta |p2| << M2
K

◮ The generating functional of χPT3 in the two–flavor limit equals now
the one of χPT2, i.e.

ZSU(2) = ZSU(3)|SU(2)−limit

◮ This equation yields the matching



Generating functional

Z = Z0 + ~Z1 + ~
2Z2 + O(~3),

Z0 = S̄2 , Z1 = S̄4 + 1
2
Tr ln(D/D0) ,

Z2 =

(a) (b) (c)

(d) (e)

(f) (g)



Generating functional

◮ Matching at one-loop order:

S̄
(3)
tree + 1

2
ln

det D

det D0
= s̄

(2)
tree + 1

2
ln

det d

det d0

◮ E.g. for ℓ6:
“

−2L9 − 1
12

Z
dq

(2π)d
1

[M2
K + q2]2

| {z }

from detDK

” Z

dx〈f+µν [uµ, uν ]〉 = ℓ6

Z

dx 〈f+µν [uµ, uν ]〉
| {z }

chiral operator
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◮ From which one verifies again

−2Lr
9(µ) +

1

192π2
(ln B0ms/µ2 + 1) = ℓr

6(µ)



Generating functional

◮ Loops at order ~
2:

◮ (a) one-particle reducible diagrams, tadpole, butterfly

◮ Steps:
◮ expand classical actions in quantum fluctations ξ up to necessary order

◮ by integration by parts put the derivatives to act on the propagators

◮ extensively use the conservation of strangeness

◮ use the heat kernel technique to evaluate the Seeley-De Witt
coefficients, propagators and their covariant derivatives

◮ convert appearing monomials into SU(2)-basis



Generating functional

◮ Loops at order ~
2:

◮ (a) one-particle reducible diagrams, tadpole, butterfly

◮ Steps:
◮ expand classical actions in quantum fluctations ξ up to necessary order

◮ by integration by parts put the derivatives to act on the propagators

◮ extensively use the conservation of strangeness

◮ use the heat kernel technique to evaluate the Seeley-De Witt
coefficients, propagators and their covariant derivatives

◮ convert appearing monomials into SU(2)-basis

◮ (b) sunset diagram is more difficult to evaluate

◮ need to know the propagators with two covariant derivatives

◮ need to expand the Seeley–coefficients around x = y up to 4th order

◮ need to express the normal derivatives via the covariant ones
(use fixed gauge: courtesy by H.Leutwyler)

◮ need to evaluate the tensorial two-loop diagrams of the sunset topology
analytically



The results of matching at order of p
2 and p

4

Gasser, Haefeli, Ivanov, Schmid PLB 652 (2007) 21

Y = Y0

h

1 + aY x + bY x2 + O(x3)
i

, Y = F , Σ,

ℓr
i = ai + x bi + O(x2) , i 6= 7 ,

ℓ7 =
F2

0

8B0ms
+ a7 + x b7 + O(x2) ,

x =
M

2
K

NF2
0

, N = 16π2 , Σ = F2B , Σ0 = F2
0B0 .

MK is the one–loop expression of the kaon-mass in the limit mu = md = 0.

ai =⇒ NLO terms (known), bi =⇒ NNLO terms (obtained).

b = p0 + p1 ℓK + p2 ℓ2
K , ℓK = ln(M

2
K/µ2).

pj are independent of the strange quark mass.



The results of matching at order of p
2 and p

4

An example:

ℓr
2 = − 1

24 N
(ℓK + 1) + 4 Lr

2

+ x
n 1

N

h433

288
− 1

24
ln 4

3
+

1

16
ρ1 − 16 N

“

2 Cr
13 − Cr

11

”i

+
h13

24
− 8 Lr

2 − 2 L3

i

ℓK +
3

8
ℓ2
K

o

ρ1 =
√

2 Cl2(arccos(1/3)) ∼= 1.41602

ℓ̄2 = 3 N ℓr
2(µ) − ln

M2
π

µ2 = 4.3 ± 0.1 ,

Lr
2 = (+0.73 ± 0.12) × 10−3, L3 = (−2.35 ± 0.37) × 10−3, µ = Mρ,

Amoros, Bijnens, Talavera 2001

Large Nc, resonance exchange =⇒ 2 Cr
13 − Cr

11 = 0 Cirigliano et al. 2006
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The results of matching at order of p
2 and p

4

Check of the calculations

LEC Source Ref. LEC Source Ref.

F Fπ [1] F2B 〈0|ūu|0〉 [2,3,4]

ℓr
1,2 ππ → ππ [5] ℓr

3 Mπ [1]

ℓr
4 Fπ , Mπ [1] ℓr

5 〈0|Ai
µAk

ν |0〉 , 〈0|Vi
µVk

ν |0〉 [1]

ℓr
6 FV(t) [6] hr

1 〈0|ūu|0〉 , Mπ , Fπ [1,4]

hr
2 〈0|Vi

µVk
ν |0〉 [1] h3 〈0|SiSk|0〉 , B [1]

[1] G. Amoros, J. Bijnens, P. Talavera, Nucl. Phys. B 568, 319 (2000)

[2] B. Moussallam, JHEP 0008, 005 (2000)

[3] R. Kaiser and J. Schweizer, JHEP 0606, 009 (2006)

[4] J. Bijnens and K. Ghorbani, Phys. Lett. B 636, 51 (2006)

[5] J. Bijnens, P. Dhonte and P. Talavera, JHEP 0401, 050 (2004)

[6] J. Bijnens and P. Talavera, JHEP 0203, 046 (2002)



The results of matching at order of p
6

Restricted framework at order of p6

◮ switch off the sources s and p (while retaining ms)

◮ this yields the following simplifications:

* reduces about half of the terms in the Lagrangian

* the solution of the classical EOM for the eta is trivial, η = 0

* no mixing between the η and the π0

* the one-particle reducible diagrams with eta and kaons do not contribute

η

(f)

≡ 0
η

(e)

K ≡ 0

K
η

(c)

K = O(p8)



The results of matching at order of p
6

◮ The relations among the SU(2)-monomials in the full theory

Haefeli, Ivanov, Schmid, Ecker 2007

8P1 − 2P2 + 6P3 − 12P13 + 8P14 − 3P15 − 2P16

−20P24 + 8P25 + 12P26 − 12P27 − 28P28 + 8P36 − 8P37

−8P39 + 2P40 + 8P41 − 8P42 − 6P43 + 4P48 = 0 .

We use this relation to exclude the monomial P27.
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◮ The relations among the SU(2)-monomials in the full theory

Haefeli, Ivanov, Schmid, Ecker 2007

8P1 − 2P2 + 6P3 − 12P13 + 8P14 − 3P15 − 2P16

−20P24 + 8P25 + 12P26 − 12P27 − 28P28 + 8P36 − 8P37

−8P39 + 2P40 + 8P41 − 8P42 − 6P43 + 4P48 = 0 .

We use this relation to exclude the monomial P27.

◮ In the restricted framework, there is an additional relation among the
remaining SU(2)–monomials:

8P1 − 2P2 + 6P3 − 20P24 + 8P25 + 12P26 − 16P28 − 3P29

+ 3P30 − 6P31 + 12P32 − 3P33 + 8P36 − 8P37 − 11P39

+ 5P40 + 14P41 − 8P42 − 9P43 + 3P44 − 3P45 − 6P51 − 6P53 = 0 .

We use this relation to exclude the monomial P1.



The results of matching at order of p
6

Gasser, Haefeli, Ivanov, Schmidt PLB 675 (2009) 49

xi = p
(0)
i + p

(1)
i ℓK + p

(2)
i ℓ2

K + O(ms)

i xi i xi i xi

1 cr
2 + 1

4
cr

1 10 cr
32 − 3

2
cr

1 − cr
27 19 cr

43 + 9
8
cr

1 + 1
4
cr

27

2 cr
3 − 3

4
cr

1 11 cr
33 + 3

8
cr

1 + 1
4
cr

27 20 cr
44 − 3

8
cr

1 − 1
4
cr

27

3 cr
24 + 5

2
cr

1 12 cr
36 − cr

1 21 cr
45 + 3

8
cr

1 + 1
4
cr

27

4 cr
25 − cr

1 13 cr
37 + cr

1 22 cr
50

5 cr
26 − 3

2
cr

1 14 cr
38 23 cr

51 + 3
4
cr

1 + 1
2
cr

27

6 cr
28 + 2cr

1 − cr
27 15 cr

39 + 11
8
cr

1 + 1
4
cr

27 24 cr
52

7 cr
29 + 3

8
cr

1 + 1
4
cr

27 16 cr
40 − 5

8
cr

1 − 1
4
cr

27 25 cr
53 + 3

4
cr

1 + 1
2
cr

27

8 cr
30 − 3

8
cr

1 − 1
4
cr

27 17 cr
41 − 7

4
cr

1 − 1
2
cr

27 26 cr
55

9 cr
31 + 3

4
cr

1 + 1
2
cr

27 18 cr
42 + cr

1 27 cr
56
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◮ (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

cr
56 = − 1

240

F2

NM
2
K

− 1

288N2
+

1

6N
Lr

9 + Cr
93

−
“ 1

144N2
− 1

6N
Lr

9

”

ℓK − 1

288N2
ℓ2
K
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2
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1

6N
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−
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6N
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9

”
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288N2
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K

◮ (2) The pion form factor (Bijnens, Colangelo, Talavera 1998, 2002)

cr
51 − cr

53 = +
319

73728N2
− 1

480N

F2

NM
2
K

+
245

98304N2
ln 4

3

− 1

12N
Lr

3 +
1

24N
Lr

9 + Cr
88 − Cr

90 +
301

196608N2
ρ1

+
“ 7

1728N2
− 1

12N
Lr

3 +
1

24N
Lr

9

”

ℓK − 1

1152N2
ℓ2
K
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cr
51 − cr

53 = +
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− 1
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F2
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2
K

+
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ln 4

3

− 1

12N
Lr

3 +
1

24N
Lr

9 + Cr
88 − Cr

90 +
301

196608N2
ρ1

+
“ 7

1728N2
− 1

12N
Lr

3 +
1

24N
Lr

9

”

ℓK − 1

1152N2
ℓ2
K

◮ Matching of the order p6 LECs in the parity-odd sector was
performed by K. Kampf and B. Moussallam (arXiv:0901.4688 [hep-ph].)
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Summary

◮ We studied χPT3 in the limit mu, md ≪ ms , |p2| ≪ M2
K , and

assuming that the external sources live in the two-flavor subspace,
e.g. vµ =

P3
i=1 vi

µλi.

◮ In this limit, χPT3 =⇒ χPT2.

◮ By using this reduction, we expressed the SU(2) LO and NLO LECs
through the SU(3) LECs at two-loop order.

◮ At order of p6, we used the additional restricted framework in χPT3:
s = p = 0 ( while retaing ms.)

◮ We established the relations for 27 linear combinations of the 28
SU(2) NNLO LECs ci at two-loop order.

◮ We checked the obtained relations by using the available two-loop
calculations in the literature.

◮ These relations might give additional information on the values of the
low-energy constants.
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