Relations between SU(2) and SU(3)-LECs in $\chi \mathrm{PT}$ at two-loop level

M. A. Ivanov (Dubna)
J. Gasser, Ch. Haefeli, M. Schmid (Bern)

CD: Bern’09

Contents

Introduction

Example of matching at one-loop

The results of matching at two-loop order

Summary

Introduction

Chiral Perturbation Theory ($\chi \mathrm{PT}$) is Effective Field Theory of QCD at low energies

- Exploits the chiral symmetry of QCD and its spontaneous breaking;
- $\mathcal{L}_{\text {eff }}$ is expressed in terms of the Goldstone bosons:

$$
S U(2) \Longrightarrow \text { pions, } \quad S U(3) \Longrightarrow \text { pions, kaons, eta ; }
$$

- Includes external sources $\mathrm{v}, \mathrm{a}, \mathrm{p}, \mathrm{s}$;
- $\mathcal{L}_{\text {eff }}$ is a series built according to the chiral power-counting ;

Introduction

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =\mathcal{L}_{2}+\mathcal{L}_{4}+\mathcal{L}_{6}+\ldots \\
\mathcal{L}_{2} & \Longrightarrow \text { Weinberg 1979 } \\
\mathcal{L}_{4} & \Longrightarrow \text { Gasser, Leutwyler 1984,1985 } \\
\mathcal{L}_{6} & \Longrightarrow \text { Fearing, Scherer 1996; Bijnens, Colangelo, Ecker 1999,2000 } \\
\mathcal{L}_{2} & =\frac{\mathrm{F}^{2}}{4}<\mathbf{u}_{\mu} \mathbf{u}^{\mu}+\chi_{+}>
\end{aligned}
$$

Introduction

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{2}+\mathcal{L}_{4}+\mathcal{L}_{6}+\ldots
$$

$\mathcal{L}_{2} \Longrightarrow$ Weinberg 1979 $\mathcal{L}_{4} \Longrightarrow$ Gasser, Leutwyler 1984,1985 $\mathcal{L}_{6} \Longrightarrow \quad$ Fearing, Scherer 1996; Bijnens, Colangelo, Ecker 1999,2000

$$
\mathcal{L}_{2}=\frac{\mathbf{F}^{2}}{4}<\mathbf{u}_{\mu} \mathbf{u}^{\mu}+\chi_{+}>
$$

u_{μ} contains Goldstone bosons coupled with external vector and axial fields
χ_{+}contains Goldstone bosons coupled with external scalar and pseudoscalar fields

$$
\begin{aligned}
& \mathcal{L}_{4}^{\mathrm{SU}_{2}}=\sum_{\mathrm{i}=1}^{10} \ell_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}} \quad \mathcal{L}_{6}^{\mathrm{SU}}=\sum_{\mathrm{i}=1}^{57} \mathrm{C}_{\mathrm{i}} \mathbf{P}_{\mathrm{i}} \quad(57 \rightarrow 56 \text { arXiv:0705.0576 [hep-ph] }) \\
& \mathcal{L}_{4}^{\mathrm{SU}_{3}}=\sum_{\mathrm{i}=1}^{12} \mathrm{~L}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \quad \mathcal{L}_{6}^{\mathrm{SU}_{3}}=\sum_{\mathrm{i}=1}^{94} \mathrm{C}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}
\end{aligned}
$$

Introduction

- $\mathcal{L}_{\text {eff }}$ contains a number of coupling constants, called Low Energy Constants (LECs) which are not fixed by chiral symmetry ;
- LECs are independent of the light quark masses $m_{u, d}$. They describe the influence of heavy degrees of freedom;
- Calculations with $\mathcal{L}_{\text {eff }}$ give an expansion in quark masses and momenta:

Chiral perturbation theory $(\chi \mathrm{PT})$
Gasser, Leutwyler 1984,1985

- $\chi \mathrm{PT} \mathrm{T}_{2}$ gives an expansion around $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}=0$ whereas $\chi \mathrm{PT}_{3}$ - around $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}=\mathrm{m}_{\mathrm{s}}=0$;

Introduction

- At small external momenta, these two expansions should be equivalent \Longrightarrow one can express the LECs in $\chi \mathrm{PT}_{2}$ through the ones in $\chi \mathrm{PT}_{3}$ and the strange quark mass m_{s};
- Such relations give an additional information on the values of LECs;
- The procedure of findings the relations between $\operatorname{SU}(2)$ and $\operatorname{SU}(3)$ LECs is called as "matching" ;
- The matching at one-loop level was done by
- The matching at two-loop level was done by

Example of matching at one-loop

$$
\left\langle\pi^{+}\left(\mathbf{p}^{\prime}\right)\right| \frac{1}{2}\left(\overline{\mathbf{u}} \gamma_{\mu} \mathbf{u}-\overline{\mathbf{d}} \gamma_{\mu} \mathbf{d}\right)\left|\pi^{+}(\mathbf{p})\right\rangle=\left(\mathbf{p}+\mathbf{p}^{\prime}\right)_{\mu} \mathrm{F}_{\mathrm{V}}(\mathbf{t}) ; \mathbf{t}=\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2},
$$

In the chiral limit $m_{u}=m_{d}=0$:
2 flavours : $\quad F_{V, 2}(t)=1+\frac{t}{F^{2}} \Phi(t, 0 ; d)-\frac{\ell_{6} t}{F^{2}}$
3 flavours : $\quad \mathrm{F}_{\mathrm{V}, 3}(\mathrm{t})=1+\frac{\mathrm{t}}{\mathrm{F}_{0}^{2}}\left[\Phi(\mathrm{t}, 0 ; \mathrm{d})+\frac{1}{2} \Phi\left(\mathrm{t}, \mathrm{M}_{\mathrm{k}} ; \mathrm{d}\right)\right]+\frac{2 \mathrm{~L}_{9} \mathrm{t}}{\mathrm{F}_{0}^{2}}$

Example of matching at one-loop

$$
\left\langle\pi^{+}\left(\mathbf{p}^{\prime}\right)\right| \frac{1}{2}\left(\overline{\mathbf{u}} \gamma_{\mu} \mathbf{u}-\overline{\mathbf{d}} \gamma_{\mu} \mathbf{d}\right)\left|\pi^{+}(\mathbf{p})\right\rangle=\left(\mathbf{p}+\mathbf{p}^{\prime}\right)_{\mu} \mathrm{F}_{V}(\mathbf{t}) ; \mathbf{t}=\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2},
$$

In the chiral limit $m_{u}=m_{d}=0$:
2 flavours : $\quad F_{V, 2}(t)=1+\frac{t}{F^{2}} \Phi(t, 0 ; d)-\frac{\ell_{6} t}{F^{2}}$
3 flavours : $\quad \mathrm{F}_{\mathrm{V}, 3}(\mathrm{t})=1+\frac{\mathrm{t}}{\mathrm{F}_{0}^{2}}\left[\Phi(\mathrm{t}, 0 ; \mathrm{d})+\frac{1}{2} \Phi\left(\mathrm{t}, \mathrm{M}_{\mathrm{K}} ; \mathrm{d}\right)\right]+\frac{2 \mathrm{~L}_{9} \mathrm{t}}{\mathrm{F}_{0}^{2}}$

$\Phi\left(t, M_{K} ; d\right)=\sum_{n=0}^{\infty} \Phi_{\mathrm{n}}\left(\mathrm{M}_{\mathrm{K}}, \mathrm{d}\right)\left(\frac{\mathrm{t}}{\mathrm{M}_{\mathrm{K}}^{2}}\right)^{\mathrm{n}}$

Example of matching at one-loop

$$
\left\langle\pi^{+}\left(\mathbf{p}^{\prime}\right)\right| \frac{1}{2}\left(\overline{\mathbf{u}} \gamma_{\mu} \mathbf{u}-\overline{\mathbf{d}} \gamma_{\mu} \mathbf{d}\right)\left|\pi^{+}(\mathbf{p})\right\rangle=\left(\mathbf{p}+\mathbf{p}^{\prime}\right)_{\mu} \mathrm{F}_{\mathrm{V}}(\mathbf{t}) ; \mathbf{t}=\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2},
$$

In the chiral limit $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}=\mathbf{0}$:
2 flavours: $\quad \mathrm{F}_{\mathrm{V}, 2}(\mathrm{t})=1+\frac{\mathrm{t}}{\mathrm{F}^{2}} \Phi(\mathrm{t}, 0 ; \mathrm{d})-\frac{\ell_{6} \mathrm{t}}{\mathrm{F}^{2}}$
3 flavours : $\quad \mathrm{F}_{\mathrm{V}, 3}(\mathrm{t})=1+\frac{\mathrm{t}}{\mathrm{F}_{0}^{2}}\left[\Phi(\mathrm{t}, 0 ; \mathrm{d})+\frac{1}{2} \Phi\left(\mathrm{t}, \mathrm{M}_{\mathrm{K}} ; \mathrm{d}\right)\right]+\frac{2 \mathrm{~L}_{\mathrm{g}} \mathrm{t}}{\mathrm{F}_{0}^{2}}$
Drop terms of order " t " and higher in the expansion of $\Phi\left(\mathrm{t}, \mathrm{M}_{\mathrm{K}} ; \mathrm{d}\right)$. It is seen that $F_{v, 3}(t)$ reduces to $F_{v, 2}(t)$ if we put $F=F_{0}$ and

$$
-\ell_{6}=2 \mathbf{L}_{9}+\frac{1}{2} \Phi\left(0, M_{K}, \mathrm{~d}\right) .
$$

Example of matching at one-loop

$$
\left\langle\pi^{+}\left(\mathbf{p}^{\prime}\right)\right| \frac{1}{2}\left(\overline{\mathbf{u}} \gamma_{\mu} \mathbf{u}-\overline{\mathbf{d}} \gamma_{\mu} \mathbf{d}\right)\left|\pi^{+}(\mathbf{p})\right\rangle=\left(\mathbf{p}+\mathbf{p}^{\prime}\right)_{\mu} \mathrm{F}_{\mathrm{V}}(\mathbf{t}) ; \mathbf{t}=\left(\mathbf{p}^{\prime}-\mathbf{p}\right)^{2},
$$

In the chiral limit $\mathrm{m}_{\mathrm{u}}=\mathrm{m}_{\mathrm{d}}=\mathbf{0}$:
2 flavours: $\quad \mathrm{F}_{\mathrm{V}, 2}(\mathrm{t})=1+\frac{\mathrm{t}}{\mathrm{F}^{2}} \Phi(\mathrm{t}, 0 ; \mathrm{d})-\frac{\ell_{6} \mathrm{t}}{\mathrm{F}^{2}}$
3 flavours : $\quad \mathrm{F}_{\mathrm{V}, 3}(\mathrm{t})=1+\frac{\mathrm{t}}{\mathrm{F}_{0}^{2}}\left[\Phi(\mathrm{t}, 0 ; \mathrm{d})+\frac{1}{2} \Phi\left(\mathrm{t}, \mathrm{M}_{\mathrm{K}} ; \mathrm{d}\right)\right]+\frac{2 \mathrm{~L}_{\mathrm{g}} \mathrm{t}}{\mathrm{F}_{0}^{2}}$
Drop terms of order " t " and higher in the expansion of $\Phi\left(\mathrm{t}, \mathrm{M}_{\mathrm{K}} ; \mathrm{d}\right)$. It is seen that $F_{v, 3}(t)$ reduces to $F_{v, 2}(t)$ if we put $F=F_{0}$ and

$$
-\ell_{6}=2 \mathrm{~L}_{9}+\frac{1}{2} \Phi\left(0, \mathrm{M}_{\mathrm{K}}, \mathrm{~d}\right) .
$$

At $\mathbf{d}=4$, this equation gives the relation between renormalized LECs

$$
\ell_{6}^{r}(\mu)=-2 \mathrm{~L}_{9}^{r}(\mu)+\frac{1}{192 \pi^{2}}\left(\ln \mathrm{~B}_{0} \mathrm{~m}_{\mathrm{s}} / \mu^{2}+1\right) .
$$

Matching at two loops

- One can get the matching for SU(2)-LECs at order $\mathrm{p}^{2}, \mathrm{p}^{4}$ from available two-loop calculations of the various matrix elements in $\chi \mathrm{PT}_{3}$
- But the matching for $\operatorname{SU}(2)$-LECs at order p^{6} in this manner requires a tremendous amount of two-loop calculations in $\chi \mathrm{P} \mathrm{T}_{2,3}$.
- Therefore, we have developed a generic method based on the path integral formulation of $\chi \mathrm{PT}$.

The idea of method

- Reduce $\chi \mathrm{PT}_{3}$ to $\chi \mathrm{PT}_{2}$ by imposing two-flavor limit restrictions:
* the external sources of $\chi \mathrm{PT}_{3}$ are restricted to the two-flavor subspace
* put $m_{u}=m_{d}=0$, since the LECs of $\chi P T$ are independent of $m_{u, d}$
* restrict by small external momenta $\left|\mathrm{p}^{2}\right| \ll \mathrm{M}_{\mathrm{K}}^{2}$
- The generating functional of $\chi \mathrm{PT}_{3}$ in the two-flavor limit equals now the one of $\chi \mathrm{PT}_{2}$, i.e.

$$
\mathrm{Z}^{\mathrm{SU}(2)}=\left.\mathrm{Z}^{\mathrm{SU}(3)}\right|_{\mathrm{SU}(2)-\mathrm{limit}}
$$

- This equation yields the matching

Generating functional

Generating functional

- Matching at one-loop order:

$$
\overline{\mathrm{S}}_{\text {tree }}^{(3)}+\frac{1}{2} \ln \frac{\operatorname{det} \mathrm{D}}{\operatorname{det} \mathrm{D}^{0}}=\overline{\mathrm{s}}_{\text {tree }}^{(2)}+\frac{1}{2} \ln \frac{\operatorname{det} \mathbf{d}}{\operatorname{det} \mathrm{~d}^{0}}
$$

- E.g. for ℓ_{6} :

$$
(-2 \mathrm{~L}_{9} \underbrace{-\frac{1}{12} \int \frac{\mathrm{dq}}{(2 \pi)^{\mathrm{d}}} \frac{1}{\left[\mathrm{M}_{\mathrm{K}}^{2}+\mathbf{q}^{2}\right]^{2}}}_{\text {from } \operatorname{det} \mathrm{D}_{\mathrm{K}}}) \int \mathrm{dx}\left\langle\mathbf{f}_{+\mu \nu}\left[\mathbf{u}_{\mu}, \mathbf{u}_{\nu}\right]\right\rangle=\ell_{6} \int \mathrm{dx} \underbrace{\left\langle\mathbf{f}_{+\mu \nu}\left[\mathbf{u}_{\mu}, \mathbf{u}_{\nu}\right]\right\rangle}_{\text {chiral operator }}
$$

Generating functional

- Matching at one-loop order:

$$
\overline{\mathrm{S}}_{\text {tree }}^{(3)}+\frac{1}{2} \ln \frac{\operatorname{det} D}{\operatorname{det} \mathrm{D}^{0}}=\overline{\mathrm{s}}_{\text {tree }}^{(2)}+\frac{1}{2} \ln \frac{\operatorname{det} \mathrm{~d}}{\operatorname{det} \mathbf{d}^{0}}
$$

- E.g. for ℓ_{6} :

$$
(-2 \mathrm{~L}_{9} \underbrace{-\frac{1}{12} \int \frac{\mathrm{dq}}{(2 \pi)^{\mathrm{d}}} \frac{1}{\left[\mathrm{M}_{\mathrm{K}}^{2}+\mathbf{q}^{2}\right]^{2}}}_{\text {from } \operatorname{det} \mathrm{D}_{\mathrm{K}}}) \int \mathrm{dx}\left\langle\mathbf{f}_{+\mu \nu}\left[\mathbf{u}_{\mu}, \mathbf{u}_{\nu}\right]\right\rangle=\ell_{6} \int \mathrm{dx} \underbrace{\left\langle\mathbf{f}_{+\mu \nu}\left[\mathbf{u}_{\mu}, \mathbf{u}_{\nu}\right]\right\rangle}_{\text {chiral operator }}
$$

- From which one verifies again

$$
-2 L_{9}^{r}(\mu)+\frac{1}{192 \pi^{2}}\left(\ln B_{0} m_{s} / \mu^{2}+1\right)=\ell_{6}^{r}(\mu)
$$

Generating functional

- Loops at order \hbar^{2} :
- (a) one-particle reducible diagrams, tadpole, butterfly
- Steps:
- expand classical actions in quantum fluctations ξ up to necessary order
- by integration by parts put the derivatives to act on the propagators
- extensively use the conservation of strangeness
- use the heat kernel technique to evaluate the Seeley-De Witt coefficients, propagators and their covariant derivatives
- convert appearing monomials into $\mathrm{SU}(2)$-basis

Generating functional

- Loops at order \hbar^{2} :
- (a) one-particle reducible diagrams, tadpole, butterfly
- Steps:
- expand classical actions in quantum fluctations ξ up to necessary order
- by integration by parts put the derivatives to act on the propagators
- extensively use the conservation of strangeness
- use the heat kernel technique to evaluate the Seeley-De Witt coefficients, propagators and their covariant derivatives
- convert appearing monomials into SU(2)-basis
- (b) sunset diagram is more difficult to evaluate
- need to know the propagators with two covariant derivatives
- need to expand the Seeley-coefficients around $x=y$ up to 4th order
- need to express the normal derivatives via the covariant ones (use fixed gauge: courtesy by H.Leutwyler)
- need to evaluate the tensorial two-loop diagrams of the sunset topology analytically

The results of matching at order of p^{2} and p^{4}

Gasser, Haefeli, Ivanov, Schmid PLB 652 (2007) 21

$$
\begin{aligned}
Y & =Y_{0}\left[1+a_{Y} x+b_{Y} x^{2}+\mathcal{O}\left(x^{3}\right)\right], \quad Y=F, \Sigma, \\
\ell_{i}^{r} & =a_{i}+x b_{i}+\mathcal{O}\left(x^{2}\right), \quad i \neq 7, \\
\ell_{7} & =\frac{F_{0}^{2}}{8 B_{0} m_{s}}+a_{7}+x b_{7}+\mathcal{O}\left(x^{2}\right), \\
x & =\frac{\bar{M}_{K}^{2}}{N F_{0}^{2}}, \quad N=16 \pi^{2}, \quad \Sigma=F^{2} B, \quad \Sigma_{0}=F_{0}^{2} B_{0} .
\end{aligned}
$$

\bar{M}_{K} is the one-loop expression of the kaon-mass in the limit $m_{u}=m_{d}=0$. $a_{i} \Longrightarrow$ NLO terms (known), $\quad b_{i} \Longrightarrow$ NNLO terms (obtained).

$$
\mathrm{b}=\mathrm{p}_{0}+\mathrm{p}_{1} \ell_{\mathrm{K}}+\mathrm{p}_{2} \ell_{\mathrm{K}}^{2}, \quad \ell_{\mathrm{K}}=\ln \left(\overline{\mathrm{M}}_{\mathrm{K}}^{2} / \mu^{2}\right)
$$

p_{j} are independent of the strange quark mass.

The results of matching at order of p^{2} and p^{4}
An example:

$$
\begin{aligned}
\ell_{2}^{r}= & -\frac{1}{24 \mathrm{~N}}\left(\ell_{\mathrm{K}}+1\right)+4 \mathrm{~L}_{2}^{r} \\
+ & \times\left\{\frac{1}{\mathrm{~N}}\left[\frac{433}{288}-\frac{1}{24} \ln \frac{4}{3}+\frac{1}{16} \rho_{1}-16 \mathrm{~N}\left(2 \mathrm{C}_{13}^{r}-\mathrm{C}_{11}^{r}\right)\right]\right. \\
& \left.+\left[\frac{13}{24}-8 \mathrm{~L}_{2}^{r}-2 \mathrm{~L}_{3}\right] \ell_{\mathrm{K}}+\frac{3}{8} \ell_{\mathrm{K}}^{2}\right\} \\
\rho_{1}= & \sqrt{2} \mathrm{Cl}_{2}(\arccos (1 / 3)) \cong 1.41602 \\
\bar{\ell}_{2}= & 3 \mathrm{~N} \ell_{2}^{r}(\mu)-\ln \frac{\mathrm{M}_{\pi}^{2}}{\mu^{2}}=4.3 \pm 0.1, \\
\mathrm{~L}_{2}^{r}= & (+0.73 \pm 0.12) \times 10^{-3}, \quad \mathrm{~L}_{3}=(-2.35 \pm 0.37) \times 10^{-3}, \quad \mu=\mathrm{M}_{\rho},
\end{aligned}
$$

$$
\text { Amoros, Bijnens, Talavera } 2001
$$

Large N_{c}, resonance exchange $\Longrightarrow 2 C_{13}^{r}-C_{11}^{r}=0 \quad$ Cirigliano et al. 2006

The results of matching at order of p^{2} and p^{4}

The results of matching at order of p^{2} and p^{4}

Check of the calculations

LEC	Source	Ref.	LEC	Source	Ref.
F	$\mathrm{F}_{\boldsymbol{\pi}}$	[1]	$\mathrm{F}^{2} \mathrm{~B}$	$\langle 0\| \bar{u} u\|0\rangle$	[2,3,4]
$\ell_{1,2}^{r}$	$\pi \pi \rightarrow \pi \pi$	[5]	ℓ_{3}^{r}	M_{π}	[1]
ℓ_{4}^{r}	$\mathrm{F}_{\pi}, \mathrm{M}_{\boldsymbol{\pi}}$	[1]	ℓ_{5}^{r}	$\langle 0\| A_{\mu}^{i} A_{\nu}^{\mathrm{k}}\|0\rangle,\langle 0\| V_{\mu}^{i} \mathrm{~V}_{\nu}^{\mathrm{k}}\|0\rangle$	[1]
ℓ_{6}^{r}	$\mathrm{F}_{\mathrm{V}}(\mathrm{t})$	[6]	h_{1}	$\langle 0\| \bar{u} u\|0\rangle, M_{\pi}, F_{\pi}$	[1,4]
h_{2}^{r}	$\langle 0\| V_{\mu}^{i} V_{\nu}^{\mathrm{k}}\|0\rangle$	[1]	h_{3}	$\langle 0\| S^{\text {i }}{ }^{\mathrm{k}}\|0\rangle$, B	[1]

[1] G. Amoros, J. Bijnens, P. Talavera, Nucl. Phys. B 568, 319 (2000)
[2] B. Moussallam, JHEP 0008, 005 (2000)
[3] R. Kaiser and J. Schweizer, JHEP 0606, 009 (2006)
[4] J. Bijnens and K. Ghorbani, Phys. Lett. B 636, 51 (2006)
[5] J. Bijnens, P. Dhonte and P. Talavera, JHEP 0401, 050 (2004)
[6] J. Bijnens and P. Talavera, JHEP 0203, 046 (2002)

Restricted framework at order of p^{6}

- switch off the sources s and p (while retaining m_{s})
- this yields the following simplifications:
* reduces about half of the terms in the Lagrangian
* the solution of the classical EOM for the eta is trivial, $\eta=0$
* no mixing between the η and the π^{0}
* the one-particle reducible diagrams with eta and kaons do not contribute

(c)

The results of matching at order of p^{6}

- The relations among the $\mathbf{S U (2)}$-monomials in the full theory

Haefeli, Ivanov, Schmid, Ecker 2007

$$
\begin{gathered}
8 P_{1}-2 P_{2}+6 P_{3}-12 P_{13}+8 P_{14}-3 P_{15}-2 P_{16} \\
-20 P_{24}+8 P_{25}+12 P_{26}-12 P_{27}-28 P_{28}+8 P_{36}-8 P_{37} \\
-8 P_{39}+2 P_{40}+8 P_{41}-8 P_{42}-6 P_{43}+4 P_{48}=0
\end{gathered}
$$

We use this relation to exclude the monomial P_{27}.

The results of matching at order of p^{6}

- The relations among the $\mathbf{S U (2)}$-monomials in the full theory

Haefeli, Ivanov, Schmid, Ecker 2007

$$
\begin{gathered}
8 \mathrm{P}_{1}-2 \mathrm{P}_{2}+6 \mathrm{P}_{3}-12 \mathrm{P}_{13}+8 \mathrm{P}_{14}-3 \mathrm{P}_{15}-2 \mathrm{P}_{16} \\
-20 \mathrm{P}_{24}+8 \mathrm{P}_{25}+12 \mathrm{P}_{26}-12 \mathrm{P}_{27}-28 \mathrm{P}_{28}+8 \mathrm{P}_{36}-8 \mathrm{P}_{37} \\
-8 \mathrm{P}_{39}+2 \mathrm{P}_{40}+8 \mathrm{P}_{41}-8 \mathrm{P}_{42}-6 \mathrm{P}_{43}+4 \mathrm{P}_{48}=0
\end{gathered}
$$

We use this relation to exclude the monomial P_{27}.

- In the restricted framework, there is an additional relation among the remaining $\mathbf{S U (2) - m o n o m i a l s : ~}$

$$
\begin{aligned}
& 8 P_{1}-2 P_{2}+6 P_{3}-20 P_{24}+8 P_{25}+12 P_{26}-16 P_{28}-3 P_{29} \\
& +3 P_{30}-6 P_{31}+12 P_{32}-3 P_{33}+8 P_{36}-8 P_{37}-11 P_{39} \\
& +5 P_{40}+14 P_{41}-8 P_{42}-9 P_{43}+3 P_{44}-3 P_{45}-6 P_{51}-6 P_{53}=0
\end{aligned}
$$

We use this relation to exclude the monomial P_{1}.

The results of matching at order of p^{6}

Gasser, Haefeli, Ivanov, Schmidt PLB 675 (2009) 49

$$
x_{i}=p_{i}^{(0)}+p_{i}^{(1)} \ell_{K}+p_{i}^{(2)} \ell_{K}^{2}+\mathbf{O}\left(m_{s}\right)
$$

i	x_{i}	i	x_{i}	i	x_{i}
1	$\mathrm{C}_{2}^{\mathrm{r}}+\frac{1}{4} \mathrm{C}_{1}^{\mathrm{r}}$	10	$\mathrm{c}_{32}^{\mathrm{r}}-\frac{3}{2} \mathrm{C}_{1}^{\mathrm{r}}-\mathrm{c}_{27}^{\mathrm{r}}$	19	$\mathrm{C}_{43}^{\mathrm{r}}+\frac{9}{8} \mathrm{C}_{1}^{\mathrm{r}}+\frac{1}{4} \mathrm{C}_{27}^{\mathrm{r}}$
2	$\mathrm{c}_{3}^{\mathrm{r}}-\frac{3}{4} \mathrm{c}_{1}^{\mathrm{r}}$	11	$\mathrm{C}_{33}^{\mathrm{r}}+\frac{3}{8} \mathrm{C}_{1}^{\mathrm{r}}+\frac{1}{4} \mathrm{c}_{27}^{\mathrm{r}}$	20	$\mathrm{c}_{44}^{\mathrm{r}}-\frac{3}{8} \mathrm{c}_{1}^{\mathrm{r}}-\frac{1}{4} \mathrm{c}_{27}^{\mathrm{r}}$
3	$\mathrm{c}_{24}^{\mathrm{r}}+\frac{5}{2} \mathrm{c}_{1}^{\mathrm{r}}$	12	$\mathrm{c}_{36}^{\mathrm{r}}-\mathrm{c}_{1}^{\mathrm{r}}$	21	$\mathrm{C}_{45}^{\mathrm{r}}+\frac{3}{8} \mathrm{C}_{1}^{\mathrm{r}}+\frac{1}{4} \mathrm{C}_{27}^{\mathrm{r}}$
4	$\mathrm{C}_{25}^{\mathrm{r}}-\mathrm{C}_{1}^{\mathrm{r}}$	13	$\mathbf{c}_{37}^{\mathrm{r}}+\mathrm{c}_{1}^{\mathrm{r}}$	22	$\mathrm{C}_{50}^{\mathrm{r}}$
5	$\mathrm{C}_{26}^{\mathrm{r}}-\frac{3}{2} \mathrm{c}_{1}^{\mathrm{r}}$	14	$\mathrm{C}_{38}^{\mathrm{r}}$	23	$\mathrm{C}_{51}^{\mathrm{r}}+\frac{3}{4} \mathrm{C}_{1}^{\mathrm{r}}+\frac{1}{2} \mathrm{C}_{27}^{\mathrm{r}}$
6	$\mathrm{c}_{28}^{\mathrm{r}}+2 \mathrm{c}_{1}^{\mathrm{r}}-\mathrm{c}_{27}^{\mathrm{r}}$	15	$\mathrm{C}_{39}^{\mathrm{r}}+\frac{11}{8} \mathrm{C}_{1}^{\mathrm{r}}+\frac{1}{4} \mathrm{C}_{27}^{\mathrm{r}}$	24	$\mathrm{C}_{52}^{\mathrm{r}}$
7	$\mathrm{c}_{29}^{\mathrm{r}}+\frac{3}{8} \mathrm{C}_{1}^{\mathrm{r}}+\frac{1}{4} \mathrm{C}_{27}^{\mathrm{r}}$	16	$\mathrm{C}_{40}^{\mathrm{r}}-\frac{5}{8} \mathrm{C}_{1}^{\mathrm{r}}-\frac{1}{4} \mathrm{C}_{27}^{\mathrm{r}}$	25	$C_{53}^{\mathrm{r}}+\frac{3}{4} \mathrm{C}_{1}^{\mathrm{r}}+\frac{1}{2} \mathrm{C}_{27}^{\mathrm{r}}$
8	$C_{30}^{r}-\frac{3}{8} C_{1}^{r}-\frac{1}{4} \mathrm{c}_{27}^{\mathrm{r}}$	17	$\mathrm{C}_{41}^{\mathrm{r}}-\frac{7}{4} \mathrm{C}_{1}^{\mathrm{r}}-\frac{1}{2} \mathrm{C}_{27}^{\mathrm{r}}$	26	$\mathrm{C}_{55}^{\mathrm{r}}$
9	$c_{31}^{r}+\frac{3}{4} C_{1}^{r}+\frac{1}{2} C_{27}^{r}$	18	$\mathrm{c}_{42}^{\mathrm{r}}+\mathrm{c}_{1}^{\mathrm{r}}$	27	$\mathrm{C}_{56}^{\mathrm{r}}$

Two checks of our calculations at order of p^{6}

Two checks of our calculations at order of p^{6}

- (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

$$
\begin{aligned}
c_{56}^{r}= & -\frac{1}{240} \frac{F^{2}}{N_{M_{K}^{2}}^{2}}-\frac{1}{288 N^{2}}+\frac{1}{6 N} L_{9}^{r}+C_{93}^{r} \\
& -\left(\frac{1}{144 N^{2}}-\frac{1}{6 N} L_{9}^{r}\right) \ell_{K}-\frac{1}{288 N^{2}} \ell_{K}^{2}
\end{aligned}
$$

Two checks of our calculations at order of p^{6}

- (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

$$
\begin{aligned}
\mathrm{C}_{56}^{r}= & -\frac{1}{240} \frac{\mathrm{~F}^{2}}{\mathrm{NM}_{\mathrm{K}}^{2}}-\frac{1}{288 \mathrm{~N}^{2}}+\frac{1}{6 \mathrm{~N}} \mathrm{~L}_{9}^{\mathrm{r}}+\mathrm{C}_{93}^{\mathrm{r}} \\
& -\left(\frac{1}{144 \mathrm{~N}^{2}}-\frac{1}{6 \mathrm{~N}} \mathrm{~L}_{9}^{\mathrm{r}}\right) \ell_{\mathrm{K}}-\frac{1}{288 \mathrm{~N}^{2}} \ell_{\mathrm{K}}^{2}
\end{aligned}
$$

- (2) The pion form factor (Bijnens, Colangelo, Talavera 1998, 2002)

$$
\begin{aligned}
\mathrm{C}_{51}^{\mathrm{r}}-\mathrm{C}_{53}^{\mathrm{r}}= & +\frac{319}{73728 \mathrm{~N}^{2}}-\frac{1}{480 \mathrm{~N}} \frac{\mathrm{~F}^{2}}{\mathrm{~N}_{\mathrm{M}_{\mathrm{K}}^{2}}}+\frac{245}{98304 \mathrm{~N}^{2}} \ln \frac{4}{3} \\
& -\frac{1}{12 \mathrm{~N}} \mathrm{~L}_{3}^{\mathrm{r}}+\frac{1}{24 \mathrm{~N}} \mathrm{~L}_{9}^{\mathrm{r}}+\mathrm{C}_{88}^{\mathrm{r}}-\mathrm{C}_{90}^{\mathrm{r}}+\frac{301}{196608 \mathrm{~N}^{2}} \rho_{1} \\
& +\left(\frac{7}{1728 \mathrm{~N}^{2}}-\frac{1}{12 \mathrm{~N}} \mathrm{~L}_{3}^{\mathrm{r}}+\frac{1}{24 \mathrm{~N}} \mathrm{~L}_{9}^{\mathrm{r}}\right) \ell_{\mathrm{K}}-\frac{1}{1152 \mathrm{~N}^{2}} \ell_{\mathrm{K}}^{2}
\end{aligned}
$$

Two checks of our calculations at order of p^{6}

- (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

$$
\begin{aligned}
\mathrm{C}_{56}^{r}= & -\frac{1}{240} \frac{\mathrm{~F}^{2}}{\mathrm{NM}_{\mathrm{K}}^{2}}-\frac{1}{288 \mathrm{~N}^{2}}+\frac{1}{6 \mathrm{~N}} \mathrm{~L}_{9}^{\mathrm{r}}+\mathrm{C}_{93}^{\mathrm{r}} \\
& -\left(\frac{1}{144 \mathrm{~N}^{2}}-\frac{1}{6 \mathrm{~N}} \mathrm{~L}_{9}^{\mathrm{r}}\right) \ell_{\mathrm{K}}-\frac{1}{288 \mathrm{~N}^{2}} \ell_{\mathrm{K}}^{2}
\end{aligned}
$$

- (2) The pion form factor (Bijnens, Colangelo, Talavera 1998, 2002)

$$
\begin{aligned}
\mathbf{c}_{51}^{\mathrm{r}}-\mathrm{c}_{53}^{\mathrm{r}}= & +\frac{319}{73728 \mathrm{~N}^{2}}-\frac{1}{480 \mathrm{~N}} \frac{\mathrm{~F}^{2}}{\mathrm{~N}_{\mathrm{M}_{\mathrm{K}}^{2}}}+\frac{245}{98304 \mathrm{~N}^{2}} \ln \frac{4}{3} \\
& -\frac{1}{12 \mathrm{~N}} \mathrm{~L}_{3}^{\mathrm{r}}+\frac{1}{24 \mathrm{~N}} \mathrm{~L}_{9}^{\mathrm{r}}+\mathrm{C}_{88}^{\mathrm{r}}-\mathrm{C}_{90}^{\mathrm{r}}+\frac{301}{196608 \mathrm{~N}^{2}} \rho_{1} \\
& +\left(\frac{7}{1728 \mathrm{~N}^{2}}-\frac{1}{12 \mathrm{~N}} \mathrm{~L}_{3}^{\mathrm{r}}+\frac{1}{24 \mathrm{~N}} \mathrm{~L}_{9}^{\mathrm{r}}\right) \ell_{\mathrm{K}}-\frac{1}{1152 \mathrm{~N}^{2}} \ell_{\mathrm{K}}^{2}
\end{aligned}
$$

- Matching of the order p^{6} LECs in the parity-odd sector was performed by K. Kampf and B. Moussallam (arXiv:0901.4688 [hep-ph].)

Summary

- We studied $\chi \mathrm{PT}_{3}$ in the limit $\mathrm{m}_{\mathrm{u}}, \mathrm{m}_{\mathrm{d}} \ll \mathrm{m}_{\mathrm{s}},\left|\mathrm{p}^{2}\right| \ll \mathrm{M}_{\mathrm{K}}^{2}$, and assuming that the external sources live in the two-flavor subspace, e.g. $\mathrm{v}_{\mu}=\sum_{\mathrm{i}=1}^{3} \mathrm{v}_{\mu}^{\mathrm{i}} \lambda^{\mathrm{i}}$.

Summary

- We studied $\chi \mathrm{PT}_{3}$ in the limit $\mathrm{m}_{\mathrm{u}}, \mathrm{m}_{\mathrm{d}} \ll \mathrm{m}_{\mathrm{s}},\left|\mathrm{p}^{2}\right| \ll \mathrm{M}_{\mathrm{K}}^{2}$, and assuming that the external sources live in the two-flavor subspace, e.g. $\mathrm{v}_{\mu}=\sum_{\mathrm{i}=1}^{3} \mathrm{v}_{\mu}^{\mathrm{i}} \lambda^{\mathrm{i}}$.
- In this limit, $\chi \mathrm{PT}_{3} \Longrightarrow \chi \mathrm{PT}_{2}$.

Summary

- We studied $\chi \mathrm{PT}_{3}$ in the limit $\mathrm{m}_{\mathrm{u}}, \mathrm{m}_{\mathrm{d}} \ll \mathrm{m}_{\mathrm{s}},\left|\mathrm{p}^{2}\right| \ll \mathrm{M}_{\mathrm{K}}^{2}$, and assuming that the external sources live in the two-flavor subspace, e.g. $\mathrm{v}_{\mu}=\sum_{\mathrm{i}=1}^{3} \mathrm{v}_{\mu}^{\mathrm{i}} \lambda^{\mathrm{i}}$.
- In this limit, $\chi \mathrm{PT}_{3} \Longrightarrow \chi \mathrm{PT}_{2}$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.

Summary

- We studied $\chi \mathrm{PT}_{3}$ in the limit $\mathrm{m}_{\mathrm{u}}, \mathrm{m}_{\mathrm{d}} \ll \mathrm{m}_{\mathrm{s}},\left|\mathrm{p}^{2}\right| \ll \mathrm{M}_{\mathrm{K}}^{2}$, and assuming that the external sources live in the two-flavor subspace, e.g. $\mathrm{v}_{\mu}=\sum_{\mathrm{i}=1}^{3} \mathrm{v}_{\mu}^{\mathrm{i}} \lambda^{i}$.
- In this limit, $\chi \mathrm{PT}_{3} \Longrightarrow \chi \mathrm{PT}_{2}$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.
- At order of p^{6}, we used the additional restricted framework in $\chi \mathrm{PT}_{3}$: $\mathrm{s}=\mathrm{p}=0$ (while retaing m_{s}.)

Summary

- We studied $\chi \mathrm{PT}_{3}$ in the limit $\mathrm{m}_{\mathrm{u}}, \mathrm{m}_{\mathrm{d}} \ll \mathrm{m}_{\mathrm{s}},\left|\mathrm{p}^{2}\right| \ll \mathrm{M}_{\mathrm{K}}^{2}$, and assuming that the external sources live in the two-flavor subspace, e.g. $\mathrm{v}_{\mu}=\sum_{\mathrm{i}=1}^{3} \mathrm{v}_{\mu}^{\mathrm{i}} \lambda^{\mathrm{i}}$.
- In this limit, $\chi \mathrm{PT}_{3} \Longrightarrow \chi \mathrm{PT}_{2}$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.
- At order of p^{6}, we used the additional restricted framework in $\chi \mathrm{PT}_{3}$: $\mathrm{s}=\mathrm{p}=0$ (while retaing m_{s}.)
- We established the relations for 27 linear combinations of the 28 SU(2) NNLO LECs c_{i} at two-loop order.

Summary

- We studied $\chi \mathrm{PT}_{3}$ in the limit $\mathrm{m}_{\mathrm{u}}, \mathrm{m}_{\mathrm{d}} \ll \mathrm{m}_{\mathrm{s}},\left|\mathrm{p}^{2}\right| \ll \mathrm{M}_{\mathrm{K}}^{2}$, and assuming that the external sources live in the two-flavor subspace, e.g. $\mathrm{v}_{\mu}=\sum_{\mathrm{i}=1}^{3} \mathrm{v}_{\mu}^{\mathrm{i}} \lambda^{i}$.
- In this limit, $\chi \mathrm{PT}_{3} \Longrightarrow \chi \mathrm{PT}_{2}$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.
- At order of p^{6}, we used the additional restricted framework in $\chi \mathrm{PT}_{3}$: $\mathrm{s}=\mathrm{p}=0$ (while retaing m_{s}.)
- We established the relations for 27 linear combinations of the 28 SU(2) NNLO LECs c_{i} at two-loop order.
- We checked the obtained relations by using the available two-loop calculations in the literature.

Summary

- We studied $\chi \mathrm{PT}_{3}$ in the limit $\mathrm{m}_{\mathrm{u}}, \mathrm{m}_{\mathrm{d}} \ll \mathrm{m}_{\mathrm{s}},\left|\mathrm{p}^{2}\right| \ll \mathrm{M}_{\mathrm{K}}^{2}$, and assuming that the external sources live in the two-flavor subspace, e.g. $v_{\mu}=\sum_{i=1}^{3} v_{\mu}^{i} \lambda^{i}$.
- In this limit, $\chi \mathrm{PT}_{3} \Longrightarrow \chi \mathrm{PT}_{2}$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.
- At order of p^{6}, we used the additional restricted framework in $\chi \mathrm{PT}_{3}$: $\mathrm{s}=\mathrm{p}=0$ (while retaing m_{s}.)
- We established the relations for 27 linear combinations of the 28 SU(2) NNLO LECs c_{i} at two-loop order.
- We checked the obtained relations by using the available two-loop calculations in the literature.
- These relations might give additional information on the values of the low-energy constants.

