Relations between SU(2) and SU(3)-LECs in χPT at two-loop level

M. A. Ivanov (Dubna)

J. Gasser, Ch. Haefeli, M. Schmid (Bern)

CD: Bern'09

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contents

Introduction

Example of matching at one-loop

The results of matching at two-loop order

Summary

Chiral Perturbation Theory (χPT) is Effective Field Theory of QCD at low energies

- Exploits the chiral symmetry of QCD and its spontaneous breaking;
- \mathcal{L}_{eff} is expressed in terms of the Goldstone bosons:

 $SU(2) \Longrightarrow$ pions, $SU(3) \Longrightarrow$ pions, kaons, eta;

Includes external sources v, a, p, s;

• \mathcal{L}_{eff} is a series built according to the chiral power-counting ;

$$\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\begin{array}{cccc} \mathcal{L}_2 & \Longrightarrow & \mbox{Weinberg 1979} \\ \mathcal{L}_4 & \Longrightarrow & \mbox{Gasser, Leutwyler 1984,1985} \\ \mathcal{L}_6 & \Longrightarrow & \mbox{Fearing, Scherer 1996; Bijnens, Colangelo, Ecker 1999,2000} \end{array}$$

・ロト < 団ト < 三ト < 三ト < 三 ・ つへの

$${\cal L}_2 = -rac{{\sf F}^2}{4} < {\sf u}_\mu {\sf u}^\mu + \chi_+ >$$

 \mathbf{u}_{μ} contains Goldstone bosons coupled with external vector and axial fields

 χ_+ contains Goldstone bosons coupled with external scalar and pseudoscalar fields

$$\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\mathcal{L}_2 \implies$$
 Weinberg 1979
 $\mathcal{L}_4 \implies$ Gasser, Leutwyler 1984,1985
 $\mathcal{L}_6 \implies$ Fearing, Scherer 1996; Bijnens, Colangelo, Ecker 1999,2000

$${\cal L}_2 = - {{\sf F}^2\over 4} < {\sf u}_\mu {\sf u}^\mu + \chi_+ >$$

 \mathbf{u}_{μ} contains Goldstone bosons coupled with external vector and axial fields

 χ_+ contains Goldstone bosons coupled with external scalar and pseudoscalar fields

$$\begin{aligned} \mathcal{L}_{4}^{SU_{2}} &= \sum_{i=1}^{10} \ell_{i} K_{i} \qquad \mathcal{L}_{6}^{SU_{2}} = \sum_{i=1}^{57} c_{i} P_{i} \qquad (57 \rightarrow 56 \text{ arXiv:0705.0576 [hep-ph]}) \\ \mathcal{L}_{4}^{SU_{3}} &= \sum_{i=1}^{12} L_{i} X_{i} \qquad \mathcal{L}_{6}^{SU_{3}} = \sum_{i=1}^{94} C_{i} Y_{i} \end{aligned}$$

・ロト < 団ト < 三ト < 三ト < 三 ・ つへの

- *L*_{eff} contains a number of coupling constants, called
 Low Energy Constants (LECs) which are not fixed by chiral symmetry;
- LECs are independent of the light quark masses m_{u,d}.
 They describe the influence of heavy degrees of freedom;
- ► Calculations with *L*_{eff} give an expansion in quark masses and momenta:

Chiral perturbation theory (χPT)

Gasser, Leutwyler 1984,1985

• χPT_2 gives an expansion around $m_u = m_d = 0$ whereas χPT_3 - around $m_u = m_d = m_s = 0$;

- At small external momenta, these two expansions should be equivalent \implies one can express the LECs in χPT_2 through the ones in χPT_3 and the strange quark mass m_s ;
- Such relations give an additional information on the values of LECs;
- The procedure of findings the relations between SU(2) and SU(3) LECs is called as "matching";
- The matching at one-loop level was done by

(Gasser, Leutwyler 1985)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The matching at two-loop level was done by

(Gasser, Haefeli, Ivanov, Schmid 2007,2009)

$$\langle \pi^+(\mathbf{p}') | \tfrac{1}{2} (\bar{\mathbf{u}} \gamma_\mu \mathbf{u} - \bar{\mathbf{d}} \gamma_\mu \mathbf{d}) | \pi^+(\mathbf{p}) \rangle = (\mathbf{p} + \mathbf{p}')_\mu \mathbf{F}_V(\mathbf{t}) \ ; \ \mathbf{t} = (\mathbf{p}' - \mathbf{p})^2 \,,$$

In the chiral limit $m_u = m_d = 0$:

 $\begin{array}{ll} 2 \mbox{ flavours}: & F_{V,2}(t) = 1 + \frac{t}{F^2} \Phi(t,0;d) - \frac{\ell_6 t}{F^2} \\ 3 \mbox{ flavours}: & F_{V,3}(t) = 1 + \frac{t}{F_0^2} \left[\Phi(t,0;d) + \frac{1}{2} \Phi(t,M_K;d) \right] + \frac{2 L_9 t}{F_0^2} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

$$\langle \pi^+(\mathbf{p}') | \tfrac{1}{2} (\bar{\mathbf{u}} \gamma_\mu \mathbf{u} - \bar{\mathbf{d}} \gamma_\mu \mathbf{d}) | \pi^+(\mathbf{p}) \rangle = (\mathbf{p} + \mathbf{p}')_\mu \mathbf{F}_V(\mathbf{t}) \ ; \ \mathbf{t} = (\mathbf{p}' - \mathbf{p})^2 \,,$$

In the chiral limit $m_u = m_d = 0$:

 $\begin{array}{ll} 2 \mbox{ flavours}: & F_{V,2}(t) = 1 + \frac{t}{F^2} \Phi(t,0;d) - \frac{\ell_6 t}{F^2} \\ 3 \mbox{ flavours}: & F_{V,3}(t) = 1 + \frac{t}{F_0^2} \left[\Phi(t,0;d) + \frac{1}{2} \Phi(t,M_K;d) \right] + \frac{2 L_9 t}{F_0^2} \end{array}$

$$\Phi(t,\mathsf{M}_{\mathsf{K}};\mathsf{d}) = \sum_{n=0}^{\infty} \Phi_n(\mathsf{M}_{\mathsf{K}},\mathsf{d}) \left(\frac{t}{\mathsf{M}_{\mathsf{K}}^2}\right)^n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\langle \pi^+(\mathbf{p}') | \tfrac{1}{2} (\bar{\mathbf{u}} \gamma_\mu \mathbf{u} - \bar{\mathbf{d}} \gamma_\mu \mathbf{d}) | \pi^+(\mathbf{p}) \rangle = (\mathbf{p} + \mathbf{p}')_\mu \mathbf{F}_V(\mathbf{t}) \ ; \ \mathbf{t} = (\mathbf{p}' - \mathbf{p})^2 \,,$$

In the chiral limit $m_u = m_d = 0$:

$$\begin{array}{ll} 2 \mbox{ flavours}: & F_{V,2}(t) = 1 + \frac{t}{F^2} \Phi(t,0;d) - \frac{\ell_6 t}{F^2} \\ 3 \mbox{ flavours}: & F_{V,3}(t) = 1 + \frac{t}{F_0^2} \left[\Phi(t,0;d) + \frac{1}{2} \Phi(t,M_K;d) \right] + \frac{2L_9 t}{F_0^2} \end{array}$$

Drop terms of order "t" and higher in the expansion of $\Phi(t, M_K; d)$. It is seen that $F_{V,3}(t)$ reduces to $F_{V,2}(t)$ if we put $F = F_0$ and

$$-\ell_6 = 2 L_9 + \frac{1}{2} \Phi(0, M_K, d).$$

$$\langle \pi^+(\mathbf{p}') | \frac{1}{2} (\bar{\mathbf{u}} \gamma_\mu \mathbf{u} - \bar{\mathbf{d}} \gamma_\mu \mathbf{d}) | \pi^+(\mathbf{p}) \rangle = (\mathbf{p} + \mathbf{p}')_\mu \mathbf{F}_V(\mathbf{t}) \ ; \ \mathbf{t} = (\mathbf{p}' - \mathbf{p})^2 \,,$$

In the chiral limit $m_u = m_d = 0$:

$$\begin{array}{ll} 2 \mbox{ flavours}: & F_{V,2}(t) = 1 + \frac{t}{F^2} \Phi(t,0;d) - \frac{\ell_6 t}{F^2} \\ 3 \mbox{ flavours}: & F_{V,3}(t) = 1 + \frac{t}{F_0^2} \left[\Phi(t,0;d) + \frac{1}{2} \Phi(t,M_{K};d) \right] + \frac{2L_9 t}{F_0^2} \end{array}$$

Drop terms of order "t" and higher in the expansion of $\Phi(t, M_K; d)$. It is seen that $F_{V,3}(t)$ reduces to $F_{V,2}(t)$ if we put $F = F_0$ and

$$-\ell_6 = 2 L_9 + \frac{1}{2} \Phi(0, M_K, d).$$

At d = 4, this equation gives the relation between renormalized LECs

$$\ell_6^{\rm r}(\mu) = -2L_9^{\rm r}(\mu) + rac{1}{192\pi^2}(\ln{
m B_0m_s}/\mu^2 + 1).$$

Matching at two loops

- ► One can get the matching for SU(2)-LECs at order p², p⁴ from available two-loop calculations of the various matrix elements in <u>x</u>PT₃
- ▶ But the matching for SU(2)-LECs at order p^6 in this manner requires a tremendous amount of two-loop calculations in $\chi PT_{2,3}$.
- ▶ Therefore, we have developed a generic method based on the path integral formulation of χ PT.

The idea of method

- Reduce χPT_3 to χPT_2 by imposing two-flavor limit restrictions:
 - * the external sources of χPT_3 are restricted to the two-flavor subspace
 - * put $m_u = m_d = 0$, since the LECs of χPT are independent of $m_{u,d}$
 - * restrict by small external momenta $|p^2| \ll M_K^2$
- The generating functional of χPT_3 in the two-flavor limit equals now the one of χPT_2 , i.e.

 $\mathsf{Z}^{\mathrm{SU}(2)} = \mathsf{Z}^{\mathrm{SU}(3)}|_{\mathrm{SU}(2)-\mathrm{limit}}$

This equation yields the matching

Matching at one-loop order:

$$\bar{\mathsf{S}}_{\mathrm{tree}}^{(3)} + \tfrac{1}{2}\ln\frac{\det\mathsf{D}}{\det\mathsf{D}^0} = \bar{\mathsf{s}}_{\mathrm{tree}}^{(2)} + \tfrac{1}{2}\ln\frac{\det\mathsf{d}}{\det\mathsf{d}^0}$$

$$\textbf{E.g. for } \ell_{6}: \\ \left(-2L_{9}\underbrace{-\frac{1}{12}\int\frac{\mathrm{d}q}{(2\pi)^{d}}\frac{1}{[\mathsf{M}_{\mathsf{K}}^{2}+q^{2}]^{2}}}_{\text{from detD}_{\mathsf{K}}}\right)\int\mathrm{d}x\langle f_{+\mu\nu}[u_{\mu},u_{\nu}]\rangle = \ell_{6}\int\mathrm{d}x\underbrace{\langle f_{+\mu\nu}[u_{\mu},u_{\nu}]\rangle}_{\text{chiral operator}}$$

Matching at one-loop order:

$$\bar{\mathsf{S}}_{\mathrm{tree}}^{(3)} + \tfrac{1}{2}\ln\frac{\det\mathsf{D}}{\det\mathsf{D}^0} = \bar{\mathsf{s}}_{\mathrm{tree}}^{(2)} + \tfrac{1}{2}\ln\frac{\det\mathsf{d}}{\det\mathsf{d}^0}$$

$$\textbf{E.g. for } \ell_{6}: \\ \left(-2L_{9}\underbrace{-\frac{1}{12}\int\frac{\mathrm{d}q}{(2\pi)^{d}}\frac{1}{[\mathsf{M}_{\mathsf{K}}^{2}+q^{2}]^{2}}}_{\text{from detD}_{\mathsf{K}}}\right)\int\mathrm{d}x\langle f_{+\mu\nu}[\mathbf{u}_{\mu},\mathbf{u}_{\nu}]\rangle = \ell_{6}\int\mathrm{d}x\underbrace{\langle f_{+\mu\nu}[\mathbf{u}_{\mu},\mathbf{u}_{\nu}]\rangle}_{\text{chiral operator}}$$

From which one verifies again

$$-2L_9^r(\mu)+rac{1}{192\pi^2}(\ln B_0m_{
m s}/\mu^2+1)=\ell_6^r(\mu)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- ► Loops at order ħ²:
- (a) one-particle reducible diagrams, tadpole, butterfly
- Steps:
 - expand classical actions in quantum fluctations $\boldsymbol{\xi}$ up to necessary order

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- **by integration by parts put the derivatives to act on the propagators**
- extensively use the conservation of strangeness
- ► use the heat kernel technique to evaluate the Seeley-De Witt coefficients, propagators and their covariant derivatives
- convert appearing monomials into SU(2)-basis

- Loops at order ^{h²}:
- (a) one-particle reducible diagrams, tadpole, butterfly
- Steps:
 - expand classical actions in quantum fluctations $\boldsymbol{\xi}$ up to necessary order
 - **b** by integration by parts put the derivatives to act on the propagators
 - extensively use the conservation of strangeness
 - ► use the heat kernel technique to evaluate the Seeley-De Witt coefficients, propagators and their covariant derivatives
 - convert appearing monomials into SU(2)-basis
- (b) sunset diagram is more difficult to evaluate
 - need to know the propagators with two covariant derivatives
 - ▶ need to expand the Seeley-coefficients around x = y up to 4th order
 - need to express the normal derivatives via the covariant ones (use fixed gauge: courtesy by H.Leutwyler)
 - ► need to evaluate the tensorial two-loop diagrams of the sunset topology analytically

Gasser, Haefeli, Ivanov, Schmid PLB 652 (2007) 21

$$\begin{split} \mathbf{Y} &= \mathbf{Y}_0 \, \left[\mathbf{1} + \mathbf{a}_{Y} \, x + \mathbf{b}_{Y} \, x^2 + \mathcal{O}(x^3) \right], \qquad \mathbf{Y} = \mathbf{F} \,, \boldsymbol{\Sigma}, \\ \ell_i^r &= \mathbf{a}_i + x \, \mathbf{b}_i + \mathcal{O}(x^2) \,, \qquad \mathbf{i} \neq 7 \,, \\ \ell_7 &= \frac{\mathbf{F}_0^2}{\mathbf{8}\mathbf{B}_0 \mathbf{m}_s} + \mathbf{a}_7 + x \, \mathbf{b}_7 + \mathcal{O}(x^2) \,, \\ \mathbf{x} &= \frac{\overline{\mathbf{M}}_{\mathsf{K}}^2}{\mathsf{N} \mathbf{F}_0^2} \,, \qquad \mathsf{N} = \mathbf{16} \pi^2 \,, \qquad \boldsymbol{\Sigma} = \mathsf{F}^2 \mathsf{B} \,, \qquad \boldsymbol{\Sigma}_0 = \mathsf{F}_0^2 \mathsf{B}_0 \,. \end{split}$$

 M_{K} is the one-loop expression of the kaon-mass in the limit $m_{u} = m_{d} = 0$. $a_{i} \implies \text{NLO}$ terms (known), $b_{i} \implies \text{NNLO}$ terms (obtained).

$$\mathbf{b} = \mathbf{p}_0 + \mathbf{p}_1 \,\ell_{\mathsf{K}} + \mathbf{p}_2 \,\ell_{\mathsf{K}}^2 \,, \qquad \ell_{\mathsf{K}} = \ln(\overline{\mathsf{M}}_{\mathsf{K}}^2/\mu^2).$$

p_j are independent of the strange quark mass.

An example:

$$\begin{split} \ell_2^r &= -\frac{1}{24\,\text{N}}\,\left(\ell_{\text{K}}+1\right)+4\,\text{L}_2^r \\ &+ x\,\left\{\frac{1}{\text{N}}\Big[\frac{433}{288}-\frac{1}{24}\,\text{ln}\,\frac{4}{3}+\frac{1}{16}\,\rho_1-16\,\text{N}\left(2\,\text{C}_{13}^r-\text{C}_{11}^r\right)\Big] \\ &+ \Big[\frac{13}{24}-8\,\text{L}_2^r-2\,\text{L}_3\Big]\,\ell_{\text{K}}+\,\frac{3}{8}\ell_{\text{K}}^2\Big\} \end{split}$$

$$\rho_1 = \sqrt{2} \operatorname{Cl}_2(\operatorname{arccos}(1/3)) \cong 1.41602$$

$$\begin{split} \bar{\ell}_2 &= 3\,N\,\ell_2^r(\mu) - \ln\frac{M_\pi^2}{\mu^2} = 4.3\pm0.1\ ,\\ L_2^r &= (+0.73\pm0.12)\times10^{-3}, \quad L_3 = (-2.35\pm0.37)\times10^{-3}, \quad \mu = M_\rho,\\ \text{Amoros, Bijnens, Talavera 2001} \end{split}$$

Large N_c, resonance exchange $\implies 2 C_{13}^r - C_{11}^r = 0$ Cirigliano et al. 2006

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Check of the calculations

LEC	Source	Ref.	LEC	Source	Ref.
F	F_{π}	[1]	F ² B	$\langle 0 ar{\mathbf{u}}\mathbf{u} 0 angle$	[2,3,4]
$\ell_{1,2}^{r}$	$\pi\pi o \pi\pi$	[5]	ℓ_3^r	M_{π}	[1]
ℓ_4^r	F_{π} , M_{π}	[1]	ℓ_5^r	$\langle 0 {\sf A}^{\sf i}_\mu{\sf A}^{\sf k}_ u 0 angle$, $\langle 0 {\sf V}^{\sf i}_\mu{\sf V}^{\sf k}_ u 0 angle$	[1]
ℓ_6^r	F _V (t)	[6]	h_1^r	$\langle 0 ar{u}u 0 angle$, ${\sf M}_{\pi}$, ${\sf F}_{\pi}$	[1,4]
\mathbf{h}_{2}^{r}	$\langle 0 V^{i}_{\mu} V^{k}_{ u} 0 angle$	[1]	h ₃	$\langle 0 S^iS^k 0\rangle$, B	[1]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- [1] G. Amoros, J. Bijnens, P. Talavera, Nucl. Phys. B 568, 319 (2000)
- [2] B. Moussallam, JHEP 0008, 005 (2000)
- [3] R. Kaiser and J. Schweizer, JHEP 0606, 009 (2006)
- [4] J. Bijnens and K. Ghorbani, Phys. Lett. B 636, 51 (2006)
- [5] J. Bijnens, P. Dhonte and P. Talavera, JHEP 0401, 050 (2004)
- [6] J. Bijnens and P. Talavera, JHEP 0203, 046 (2002)

Restricted framework at order of p⁶

- switch off the sources s and p (while retaining m_s)
- this yields the following simplifications:
 - * reduces about half of the terms in the Lagrangian
 - * the solution of the classical EOM for the eta is trivial, $\eta=0$
 - * no mixing between the η and the π^{0}
 - * the one-particle reducible diagrams with eta and kaons do not contribute

▶ The relations among the SU(2)-monomials in the full theory

Haefeli, Ivanov, Schmid, Ecker 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} &8P_1-2P_2+6P_3-12P_{13}+8P_{14}-3P_{15}-2P_{16}\\ &-20P_{24}+8P_{25}+12P_{26}-12P_{27}-28P_{28}+8P_{36}-8P_{37}\\ &-8P_{39}+2P_{40}+8P_{41}-8P_{42}-6P_{43}+4P_{48}=0 \;. \end{split}$$

We use this relation to exclude the monomial P_{27} .

▶ The relations among the SU(2)-monomials in the full theory

Haefeli, Ivanov, Schmid, Ecker 2007

$$\begin{split} &8P_1-2P_2+6P_3-12P_{13}+8P_{14}-3P_{15}-2P_{16}\\ &-20P_{24}+8P_{25}+12P_{26}-12P_{27}-28P_{28}+8P_{36}-8P_{37}\\ &-8P_{39}+2P_{40}+8P_{41}-8P_{42}-6P_{43}+4P_{48}=0 \;. \end{split}$$

We use this relation to exclude the monomial P_{27} .

In the restricted framework, there is an additional relation among the remaining SU(2)-monomials:

$$\begin{split} 8\mathsf{P}_1 &- 2\mathsf{P}_2 + 6\mathsf{P}_3 - 20\mathsf{P}_{24} + 8\mathsf{P}_{25} + 12\mathsf{P}_{26} - 16\mathsf{P}_{28} - 3\mathsf{P}_{29} \\ &+ 3\mathsf{P}_{30} - 6\mathsf{P}_{31} + 12\mathsf{P}_{32} - 3\mathsf{P}_{33} + 8\mathsf{P}_{36} - 8\mathsf{P}_{37} - 11\mathsf{P}_{39} \\ &+ 5\mathsf{P}_{40} + 14\mathsf{P}_{41} - 8\mathsf{P}_{42} - 9\mathsf{P}_{43} + 3\mathsf{P}_{44} - 3\mathsf{P}_{45} - 6\mathsf{P}_{51} - 6\mathsf{P}_{53} = 0 \end{split}$$

We use this relation to exclude the monomial P_1 .

Gasser, Haefeli, Ivanov, Schmidt PLB 675 (2009) 49

$$x_i = p_i^{(0)} + p_i^{(1)} \ell_K + p_i^{(2)} \ell_K^2 + O(m_s)$$

i	x _i	i	x _i	i	x _i
1	$c_2^r + \frac{1}{4}c_1^r$	10	$c_{32}^{ m r}-rac{3}{2}c_{1}^{ m r}-c_{27}^{ m r}$	19	$c_{43}^{\rm r}+rac{9}{8}c_1^{\rm r}+rac{1}{4}c_{27}^{\rm r}$
2	$c_3^{ m r}-rac{3}{4}c_1^{ m r}$	11	$c_{33}^{r}+rac{3}{8}c_{1}^{r}+rac{1}{4}c_{27}^{r}$	20	$c_{44}^{ m r}-rac{3}{8}c_{1}^{ m r}-rac{1}{4}c_{27}^{ m r}$
3	$c_{24}^{r} + \frac{5}{2}c_{1}^{r}$	12	$c_{36}^{\rm r}-c_1^{\rm r}$	21	$c_{45}^{r}+rac{3}{8}c_{1}^{r}+rac{1}{4}c_{27}^{r}$
4	$\mathbf{c_{25}^r} - \mathbf{c_1^r}$	13	$\mathbf{c_{37}^r} + \mathbf{c_1^r}$	22	c_{50}^r
5	$c_{26}^{\mathrm{r}}-rac{3}{2}c_{1}^{\mathrm{r}}$	14	c ^r ₃₈	23	$c_{51}^{r} + rac{3}{4}c_{1}^{r} + rac{1}{2}c_{27}^{r}$
6	$c_{28}^{\rm r}+2c_1^{\rm r}-c_{27}^{\rm r}$	15	$c_{39}^{r}+rac{11}{8}c_{1}^{r}+rac{1}{4}c_{27}^{r}$	24	c ^{r} ₅₂
7	$c_{29}^{r}+rac{3}{8}c_{1}^{r}+rac{1}{4}c_{27}^{r}$	16	$c_{40}^{ m r}-rac{5}{8}c_{1}^{ m r}-rac{1}{4}c_{27}^{ m r}$	25	$c_{53}^{r}+rac{3}{4}c_{1}^{r}+rac{1}{2}c_{27}^{r}$
8	$c_{30}^{ m r}-rac{3}{8}c_{1}^{ m r}-rac{1}{4}c_{27}^{ m r}$	17	$c_{41}^{\mathrm{r}} - rac{7}{4}c_{1}^{\mathrm{r}} - rac{1}{2}c_{27}^{\mathrm{r}}$	26	C ^r ₅₅
9	$c_{31}^{\mathrm{r}}+rac{3}{4}c_{1}^{\mathrm{r}}+rac{1}{2}c_{27}^{\mathrm{r}}$	18	$\mathbf{c_{42}^r} + \mathbf{c_1^r}$	27	c ^r ₅₆

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 のQ@

► (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

$$\begin{split} c_{56}^{r} &= -\frac{1}{240} \frac{\textbf{F}^{2}}{\textbf{N} \overline{\textbf{M}}_{\textbf{K}}^{2}} - \frac{1}{288 N^{2}} + \frac{1}{6 N} \textbf{L}_{9}^{r} + \textbf{C}_{93}^{r} \\ &- \left(\frac{1}{144 N^{2}} - \frac{1}{6 N} \textbf{L}_{9}^{r} \right) \boldsymbol{\ell}_{\textbf{K}} - \frac{1}{288 N^{2}} \boldsymbol{\ell}_{\textbf{K}}^{2} \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

▶ (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

$$\begin{split} \mathbf{c}_{56}^{\mathrm{r}} &= -\frac{1}{240} \frac{\mathbf{F}^2}{\mathbf{N} \overline{\mathbf{M}}_{\mathsf{K}}^2} - \frac{1}{288 N^2} + \frac{1}{6 \mathsf{N}} \mathsf{L}_9^{\mathrm{r}} + \mathsf{C}_{93}^{\mathrm{r}} \\ &- \left(\frac{1}{144 \mathsf{N}^2} - \frac{1}{6 \mathsf{N}} \mathsf{L}_9^{\mathrm{r}} \right) \boldsymbol{\ell}_{\mathsf{K}} - \frac{1}{288 \mathsf{N}^2} \, \boldsymbol{\ell}_{\mathsf{K}}^2 \end{split}$$

• (2) The pion form factor (Bijnens, Colangelo, Talavera 1998, 2002)

$$\begin{split} \mathbf{c}_{51}^{\mathrm{r}} - \mathbf{c}_{53}^{\mathrm{r}} &= + \frac{319}{73728 \mathsf{N}^2} - \frac{1}{480\mathsf{N}} \frac{\mathsf{F}^2}{\mathsf{N}\overline{\mathsf{M}}_{\mathsf{K}}^2} + \frac{245}{98304\mathsf{N}^2} \ln \frac{4}{3} \\ &- \frac{1}{12\mathsf{N}} \mathsf{L}_3^{\mathrm{r}} + \frac{1}{24\mathsf{N}} \mathsf{L}_9^{\mathrm{r}} + \mathsf{C}_{88}^{\mathrm{r}} - \mathsf{C}_{90}^{\mathrm{r}} + \frac{301}{196608\mathsf{N}^2} \rho_1 \\ &+ \Big(\frac{7}{1728\mathsf{N}^2} - \frac{1}{12\mathsf{N}} \mathsf{L}_3^{\mathrm{r}} + \frac{1}{24\mathsf{N}} \mathsf{L}_9^{\mathrm{r}} \Big) \ell_{\mathsf{K}} - \frac{1}{1152\mathsf{N}^2} \ell_{\mathsf{K}}^2 \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

$$\begin{split} \mathbf{c}_{56}^{\mathrm{r}} &= -\frac{1}{240} \frac{\mathbf{F}^2}{\mathbf{N} \overline{\mathbf{M}}_{\mathsf{K}}^2} - \frac{1}{288 N^2} + \frac{1}{6 \mathsf{N}} \mathsf{L}_9^{\mathrm{r}} + \mathsf{C}_{93}^{\mathrm{r}} \\ &- \left(\frac{1}{144 \mathsf{N}^2} - \frac{1}{6 \mathsf{N}} \mathsf{L}_9^{\mathrm{r}} \right) \boldsymbol{\ell}_{\mathsf{K}} - \frac{1}{288 \mathsf{N}^2} \, \boldsymbol{\ell}_{\mathsf{K}}^2 \end{split}$$

• (2) The pion form factor (Bijnens, Colangelo, Talavera 1998, 2002)

$$\begin{split} \mathbf{c}_{51}^{\mathrm{r}} - \mathbf{c}_{53}^{\mathrm{r}} &= + \frac{319}{73728 \mathsf{N}^2} - \frac{1}{480\mathsf{N}} \frac{\mathsf{F}^2}{\mathsf{N}\overline{\mathsf{M}}_{\mathsf{K}}^2} + \frac{245}{98304\mathsf{N}^2} \ln \frac{4}{3} \\ &- \frac{1}{12\mathsf{N}} \mathsf{L}_3^{\mathrm{r}} + \frac{1}{24\mathsf{N}} \mathsf{L}_9^{\mathrm{r}} + \mathsf{C}_{88}^{\mathrm{r}} - \mathsf{C}_{90}^{\mathrm{r}} + \frac{301}{196608\mathsf{N}^2} \rho_1 \\ &+ \Big(\frac{7}{1728\mathsf{N}^2} - \frac{1}{12\mathsf{N}} \mathsf{L}_3^{\mathrm{r}} + \frac{1}{24\mathsf{N}} \mathsf{L}_9^{\mathrm{r}} \Big) \boldsymbol{\ell}_{\mathsf{K}} - \frac{1}{1152\mathsf{N}^2} \boldsymbol{\ell}_{\mathsf{K}}^2 \end{split}$$

Matching of the order p⁶ LECs in the parity-odd sector was performed by K. Kampf and B. Moussallam (arXiv:0901.4688 [hep-ph].)

► We studied χPT_3 in the limit $m_u, m_d \ll m_s$, $|p^2| \ll M_K^2$, and assuming that the external sources live in the two-flavor subspace, e.g. $v_{\mu} = \sum_{i=1}^{3} v_{\mu}^i \lambda^i$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We studied χPT_3 in the limit $m_u, m_d \ll m_s$, $|p^2| \ll M_K^2$, and assuming that the external sources live in the two-flavor subspace, e.g. $v_{\mu} = \sum_{i=1}^{3} v_{\mu}^i \lambda^i$.

• In this limit, $\chi PT_3 \Longrightarrow \chi PT_2$.

- We studied χPT_3 in the limit $m_u, m_d \ll m_s$, $|p^2| \ll M_K^2$, and assuming that the external sources live in the two-flavor subspace, e.g. $v_{\mu} = \sum_{i=1}^{3} v_{\mu}^i \lambda^i$.
- In this limit, $\chi PT_3 \Longrightarrow \chi PT_2$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.

- We studied χPT_3 in the limit $m_u, m_d \ll m_s$, $|p^2| \ll M_K^2$, and assuming that the external sources live in the two-flavor subspace, e.g. $v_{\mu} = \sum_{i=1}^{3} v_{\mu}^i \lambda^i$.
- In this limit, $\chi PT_3 \Longrightarrow \chi PT_2$.
- ▶ By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.
- At order of p^6 , we used the additional restricted framework in χPT_3 : s = p = 0 (while retaing m_s.)

- We studied χPT_3 in the limit $m_u, m_d \ll m_s$, $|p^2| \ll M_K^2$, and assuming that the external sources live in the two-flavor subspace, e.g. $v_{\mu} = \sum_{i=1}^{3} v_{\mu}^i \lambda^i$.
- In this limit, $\chi PT_3 \Longrightarrow \chi PT_2$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.
- At order of p⁶, we used the additional restricted framework in χPT₃:
 s = p = 0 (while retaing m_s.)

(日)

 We established the relations for 27 linear combinations of the 28 SU(2) NNLO LECs c_i at two-loop order.

- We studied χPT_3 in the limit $m_u, m_d \ll m_s$, $|p^2| \ll M_K^2$, and assuming that the external sources live in the two-flavor subspace, e.g. $v_{\mu} = \sum_{i=1}^{3} v_{\mu}^i \lambda^i$.
- In this limit, $\chi PT_3 \Longrightarrow \chi PT_2$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.
- At order of p⁶, we used the additional restricted framework in χPT₃:
 s = p = 0 (while retaing m_s.)
- We established the relations for 27 linear combinations of the 28 SU(2) NNLO LECs c_i at two-loop order.
- We checked the obtained relations by using the available two-loop calculations in the literature.

- ► We studied χPT_3 in the limit $m_u, m_d \ll m_s$, $|p^2| \ll M_K^2$, and assuming that the external sources live in the two-flavor subspace, e.g. $v_{\mu} = \sum_{i=1}^{3} v_{\mu}^i \lambda^i$.
- In this limit, $\chi PT_3 \Longrightarrow \chi PT_2$.
- By using this reduction, we expressed the SU(2) LO and NLO LECs through the SU(3) LECs at two-loop order.
- At order of p⁶, we used the additional restricted framework in χPT₃:
 s = p = 0 (while retaing m_s.)
- We established the relations for 27 linear combinations of the 28 SU(2) NNLO LECs c_i at two-loop order.
- We checked the obtained relations by using the available two-loop calculations in the literature.
- These relations might give additional information on the values of the low-energy constants.