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Introduction

Chiral Perturbation Theory (xPT) is
Effective Field Theory of QCD at low energies

E<<M,
Lqcp — Lo

v

Exploits the chiral symmetry of QCD and its spontaneous breaking ;

v

L is expressed in terms of the Goldstone bosons:

SU(2) = pions, SU(3) = pions, kaons, eta;

v

Includes external sources v, a, p,s;

v

L is a series built according to the chiral power-counting ;



Introduction

Leg = Lo+La+LeH+...
L2 = Weinberg 1979
L4 == Gasser, Leutwyler 1984,1985
L 6 —— Fearing, Scherer 1996; Bijnens, Colangelo, Ecker 1999,2000
F2
— 122
Ly = "y < ugu” 4+ x4 >

u,, contains Goldstone bosons coupled with external vector and axial fields

X+ contains Goldstone bosons coupled with external scalar and pseudoscalar fields
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Introduction

> L.g contains a number of coupling constants, called
Low Energy Constants (LECs) which are not fixed by chiral symmetry;

> LECs are independent of the light quark masses m, 4.
They describe the influence of heavy degrees of freedom;

» Calculations with L. give an expansion in quark masses and
momenta:

Chiral perturbation theory (xPT) ‘

Gasser, Leutwyler 1984,1985

» xPT- gives an expansion around m, = mq = 0 whereas
xPTs3 - around my = mg = ms = 0;



Introduction

» At small external momenta, these two expansions should be
equivalent =—> one can express the LECs in xPT> through the ones
in xXPT3 and the strange quark mass ms ;

» Such relations give an additional information on the values of LECs;

» The procedure of findings the relations between SU(2) and SU(3)
LECs is called as "matching” ;

» The matching at one-loop level was done by
(Gasser, Leutwyler 1985)

» The matching at two-loop level was done by
(Gasser, Haefeli, lvanov, Schmid 2007,2009)



Example of matching at one-loop

(7 (p) 13 (@vau — dyud) ¥ (p)) = (P + P )uFu(t) s t=(p" —p)’,

In the chiral limit my, = myg = 0:

2flavours :  Fya(t) = 1+ dJ(t 0:d) — e"t

2Lt

3flavours:  Fy3(t) =1 + 5 [¢(t 0;d) + ld)(t Mk; d)] + =
0
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Example of matching at one-loop

(7 (p) 13 (@vau — dyud) ¥ (p)) = (P + P )uFu(t) s t=(p" —p)’,

In the chiral limit my, = myg = 0:

2flavours :  Fya(t) = 1+ dJ(t 0:d) — e‘"’t

2Lt

3flavours:  Fys(t) =1 + 5 [d)(t 0;d) + 3®(t, Mk; d)] + P2
0

Drop terms of order ”t” and higher in the expansion of ®(t, Mk;d).
It is seen that Fy 3(t) reduces to Fy(t) if we put F = Fq and

1
—fle = 2 Lo + 541(0, Mk, d).
At d = 4, this equation gives the relation between renormalized LECs

(InBoms/p® + 1).

r r 1
eﬁ(/»") = _2L9(/»") + 19272

Gasser, Leutwyler (85)



Matching at two loops

» One can get the matching for SU(2)-LECs at order p?, p* from
available two-loop calculations of the various matrix elements in
xPT3

» But the matching for SU(2)-LECs at order p° in this manner requires
a tremendous amount of two-loop calculations in xPT> 3.

» Therefore, we have developed a generic method based on the path
integral formulation of xPT.



The idea of method

> Reduce xPT3 to xPT> by imposing two—flavor limit restrictions:

* the external sources of xP T3 are restricted to the two—flavor subspace

* put my = my = 0, since the LECs of xPT are independent of m, 4

* restrict by small external momenta |p?| << M2

> The generating functional of xPT;3 in the two—flavor limit equals now
the one of xPT>, i.e.

z590) = ZSU(3)|SU(2)—limit

» This equation yields the matching



Generating functional

z

Zy, =

Sz,

Z, =

Zo + hZi + h*Zy + O(?),

Z; =S, + 1 Trin(D/D°),

«O>r «Fr <



Generating functional

» Matching at one-loop order:

=(3) 1 detD _ _(2) det d
Stree + 2 In det DO Stree + 2 d t d0
» E.g. for (s:
dq 1
(=20 =1s [ oy g o) [ <t =t [ o Gl o

chiral operator
from detDg



Generating functional

» Matching at one-loop order:

detD ~(2) detd
5941 _ < 1in
tree T 21N G0 = Stree + 21N G0
» E.g. for (s:
dq 1
(=20 =1s [ oy g o) [ <t =t [ o Gl o

chiral operator
from detDg

» From which one verifies again

—2Lo(n) + § 2 53 (INBoms/p® +1) = £5(p)



Generating f

unctional

> Loops at order /%

> (a) one-particle reducible diagrams, tadpole, butterfly

> Step:
>

>

>

S:
expand classical actions in quantum fluctations £ up to necessary order

by integration by parts put the derivatives to act on the propagators
extensively use the conservation of strangeness

use the heat kernel technique to evaluate the Seeley-De Witt
coefficients, propagators and their covariant derivatives

convert appearing monomials into SU(2)-basis



Generating functional

> Loops at order /%
> (a) one-particle reducible diagrams, tadpole, butterfly

> Steps:
> expand classical actions in quantum fluctations £ up to necessary order

> by integration by parts put the derivatives to act on the propagators
> extensively use the conservation of strangeness

> use the heat kernel technique to evaluate the Seeley-De Witt
coefficients, propagators and their covariant derivatives

> convert appearing monomials into SU(2)-basis
> (b) sunset diagram is more difficult to evaluate

> need to know the propagators with two covariant derivatives
> need to expand the Seeley—coefficients around x = y up to 4th order

> need to express the normal derivatives via the covariant ones
(use fixed gauge: courtesy by H.Leutwyler)

> need to evaluate the tensorial two-loop diagrams of the sunset topology
analytically



The results of matching at order of p? and p*

Gasser, Haefeli, lvanov, Schmid PLB 652 (2007) 21

Y = Y 1+ayx+byx2+0(x3)], Y=F,%,

£ = ai+xb+0O(x%), i#£7,

b = F§ + a7 + xb7 + O(X%)

7 = 8Bom. 7 7 ,
M2

x = -5,  N=16x7, T =FB, Yo = F2By .
NF2

Mg is the one—loop expression of the kaon-mass in the limit m, = my = 0.

a; = NLO terms (known), b; = NNLO terms (obtained).

>
b = po+pitk+p2tk, &k = In(My/p%).

p; are independent of the strange quark mass.



The results of matching at order of p? and p*

An example:

v 1 r
L = ~2aN ¢k +1)+4L,;

oA ;- 16N (2 - Ch)]

13 . 3
+[ 55 — 8L —2La| b+ Sek}
p1 = +V2Cly(arccos(1/3)) = 1.41602
- . M2
& = 3N&(p)—InTF =43+01,
Ly = (4+0.73+£0.12) x 1073, L3 =(—2.35+0.37) x 1073, . =w,,

Amoros, Bijnens, Talavera 2001

Large N, resonance exchange —> 2Cj; — Cj; =0 Cirigliano et al. 2006
13 11



The results of matching at order of p? and p*

s | [ NLO .
r r - |
i --- NNLO, 2C), -C'; =0

r roo_ -5 7
— NNLO, 2C,-C',,=0.610

3L | \ ! \ ! L
0 0.05 0.1 0.15 0.2 0.25




The results of matching at order of p? and p*

’Check of the calculations ‘

LEC Source Ref. LEC Source Ref.
F Fr [1] F’B (0|uu|0) [2,3,4]
6, wrowr 5] ; M. [1]
G Fe M. [ 6 (OALALID) , (OIViVE[0)  [1]
£ Fv(t) [6] hi (0|tu|0) , M, , Fx [1.4]
hy  (OVL.Vil0)  [1] hs (0|s's*|0) . B (1]
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[2] B. Moussallam, JHEP 0008, 005 (2000)

[3] R. Kaiser and J. Schweizer, JHEP 0606, 009 (2006)

[4] J. Bijnens and K. Ghorbani, Phys. Lett. B 636, 51 (2006)

[5] J. Bijnens, P. Dhonte and P. Talavera, JHEP 0401, 050 (2004)
[6] J. Bijnens and P. Talavera, JHEP 0203, 046 (2002)



The results of matching at order of p®

Restricted framework at order of p®

» switch off the sources s and p (while retaining m;)
> this yields the following simplifications:
* reduces about half of the terms in the Lagrangian
* the solution of the classical EOM for the eta is trivial, n = 0

* no mixing between the 7 and the 7*

* the one-particle reducible diagrams with eta and kaons do not contribute



The results of matching at order of p®

> The relations among the SU(2)-monomials in the full theory

Haefeli, Ivanov, Schmid, Ecker 2007

8Py — 2P, + 6P3 — 12P13 + 8P14 — 3P15 — 2P
—20P24 + 8P25 + 12P26 — 12P37; — 28P2g + 8P3s — 8P37
—8P39 4 2P40 + 8P41 — 8P4y — 6P43 + 4Ps3 = 0 .

We use this relation to exclude the monomial P»;.
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> The relations among the SU(2)-monomials in the full theory

Haefeli, Ivanov, Schmid, Ecker 2007

8Py — 2P, + 6P3 — 12P13 + 8P14 — 3P15 — 2P
—20P24 + 8P25 + 12P26 — 12P37; — 28P2g + 8P3s — 8P37
—8P39 4 2P40 + 8P41 — 8P4y — 6P43 + 4Ps3 = 0 .

We use this relation to exclude the monomial P»7.
> In the restricted framework, there is an additional relation among the

remaining SU(2)—-monomials:

8P1 — 2P + 6P3 — 20P34 4+ 8P25 + 12P2s — 16P2g — 3P29
+ 3P30 — 6P31 + 12P32 — 3P33 + 8P3s — 8P37 — 11P39
+ 5P4o 4+ 14P41 — 8P4z — 9P43 + 3P4s — 3Pss — 6Ps; — 6Ps3 = 0.

We use this relation to exclude the monomial P;.



The results of matching at order of p®

Gasser, Haefeli, lvanov, Schmidt PLB 675 (2009) 49

xi = p® + pMex + pP 4k + O(my)

X X i

1 &+ 1 10 ) — 3cf—¢ 19 ciz+ 2+ ik
2 + €1 32 — 3C1 27 43 + 5C1 + 7C27
r 3.r r 3 r 1_r r 3 .r 1_.r

2 C3 — ch 11 C33 + §C1 + EC27 20 Cyg — §C1 — ZC27

3 b+ 3 12 i —cf 21 cjs+ 3¢ + ¢k

4 35— c 13 3y +cf 22 ¢

5 3 — i 14 cj 23 i + ict + ik

11 1

6 cj3+ 2c] — ¢y 15 i+ Fci+ 3¢5 | 24
r 3 r 1_.r r 5 r 1_.r r 3 r 1_r

7 S+l | 16 S lex, | 25 341

€29 + §C€1 + 3Co7 Cip — §C1 — 3C7 €53 + 761 + 3C37

r 3.r 1_.r r 7.r 1_r r

8 C39 — §C1 — ZC27 17 Cp — zcl — §C27 26 Css

9 C§1 + %Ci‘ + %C§7 18 cjp + ) 27 Cgﬁ
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> (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

o = —ii—#+lLr+Cr
® 7 240 NmE  288N? T 6N T T
1 1, 1,

B (144N2 B 67NL9> bk~ 82



Two checks of our calculations at order of p°

> (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

o - ii _ # + 1 —L: + (o}
® 7 240 NmE  288N? T 6N T T
1 1 1,

- (144N2 " 6N >e" 288N2 K

> (2) The pion form factor (Bijnens, Colangelo, Talavera 1998, 2002)

i = 4 319 1 P + 245
ST T 73728N? 480N g2 | 98304N2
1 1 . 301
~1ont gyt + Cas — Coo + 1g6608n2
7 1 1 1,
+ (1728N2 12N L+ 2N 24N )KK - 1152N2£K



Two checks of our calculations at order of p®

> (1) The vector-vector correlator (Amoros, Bijnens, Talavera 2000)

o - ii _ # + 1 —L: + (o
® 7 240 NmE  288N? T 6N T T

1 1 1,

- (144N2 6N > b~ 2ganz

> (2) The pion form factor (Bijnens, Colangelo, Talavera 1998, 2002)

i = 4 319 1 P + 245
ST T T 73728N? 480N g2 | 98304N2
1 1 . 301
~1ont gyt + Cas — Coo + 1g6608n2
7 1 1 1,
+ (1728N2 12N L+ 2N 24N )EK - 1152N2£K

» Matching of the order p® LECs in the parity-odd sector was
performed by K. Kampf and B. Moussallam (arxiv:0901.4688 [hep-ph].)
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Summary

» We studied xP T3 in the limit m,,mq < ms, |p?| < M%, and
assuming that the external sources live in the two-flavor subspace,
eg. v, = 2;3:1 v AL

> In this limit, xPT3 = xPT-.

» By using this reduction, we expressed the SU(2) LO and NLO LECs
through the SU(3) LECs at two-loop order.

» At order of p°, we used the additional restricted framework in xPT3:
s = p = 0 ( while retaing ms.)

» We established the relations for 27 linear combinations of the 28
SU(2) NNLO LECs c; at two-loop order.

» We checked the obtained relations by using the available two-loop
calculations in the literature.

» These relations might give additional information on the values of the
low-energy constants.
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