Baryon structure in chiral effective field theory on the light front

N.A. Tsirova

Laboratoire de Physique Corpusculaire, Aubiere, France
V.A. Karmanov

Lebedev Physical Insitute, Moscow, Russia

J.-F. Mathiot

Laboratoire de Physique Corpusculaire, Aubiere, France

Outline

- Introduction
- Formalism: covariant light-front dynamics
- Formalism: renormalization scheme
- Vertex function: equation
- Vertex function: solution
- Perspectives

I ntroduction

Need of a non-perturbative framework to calculate bound state properties
easy with $\pi N N$ coupling

to be generalized for $\pi \pi N N$ case

Formalism: light-front dynamics

- Standard LFD:

$$
t+z=0
$$

(blue plane)

Not invariant under spatial rotations!
[Covariant LFD:

$$
\begin{aligned}
& \omega \cdot x=0 \\
& \omega^{2}=0
\end{aligned}
$$

(any plane tangential to the red cone)
$\omega=(1,0,0,-1)$ corresponds to standard LFD

Check of rotational invariance: any observable should be independent of ω

Formalism: Fock representation

The state vector
$\varphi(p)=|1\rangle+|2\rangle+\ldots+|N\rangle+\ldots$
N - the maximal number of Fock sectors under consideration
n - number of constituents in a given Fock sector, $n \leq N$

The many-body vertex fuction

Formalism: renormalization

Contribution to the physical fermion propagator

The general case: dependence on the Fock sector

(maximal number of particles in which the fermion line can fluctuate)

Formalism: renormalization

Bare coupling constant: the same strategy

- Interaction with internal bosons

... before emission
- Interaction with external bosons

$(n-1)$ bosons

Lagrangian and the vertex functions

$$
L_{\text {int }}=-\frac{1}{2} \frac{g_{A}}{F_{0}} \bar{\Psi} \gamma^{\mu} \gamma_{5} \tau^{b} \partial_{\mu} \phi^{b} \Psi-\frac{1}{4 F_{0}^{2}} \bar{\Psi} \gamma^{\mu} \vec{\tau} \cdot \vec{\phi} \times \partial_{\mu} \vec{\phi} \Psi+\ldots
$$

Equations for the πN vertex functions in the case of the two-body Fock space truncation:

Pauli-Villars regularization

Extending Fock space and introducing indices:

$$
\begin{aligned}
& i=0(\text { physical) and } l \text { (Pauli-Villars) fermions } \\
& j=0 \text { (physical) and } 1,2 \text { (Pauli-Villars) bosons }
\end{aligned}
$$

System of equations:

$$
\begin{aligned}
\bar{u}\left(p_{1 i}\right) \Gamma_{1}^{i} u(p) & =\bar{u}\left(p_{1 i}\right)\left(V_{1}+V_{2}\right) u(p) \\
\bar{u}\left(k_{1 i}\right) \Gamma_{2}^{i j} u(p) & =\bar{u}\left(k_{1 i}\right)\left(V_{3}+V_{4}\right) u(p) .
\end{aligned}
$$

Vertex functions representation

$$
\begin{gathered}
\bar{u}\left(k_{1 i}\right) \Gamma_{1}^{i} u(p)=\left(m_{i}-m^{2}\right) a_{1}^{i} \bar{u}\left(k_{1 i}\right) u(p) \\
\bar{u}\left(k_{1 i}\right) \Gamma_{2}^{i j} u(p)=i \bar{u}\left(k_{1 i}\right)\left(\left(\not k_{2 j}-\psi \tau\right) b_{1}^{i j}\left(R_{\perp}, x\right)+\frac{m \psi}{\omega \cdot p} b_{2}^{i j}\left(R_{\perp}, x\right)\right) \gamma_{5} u(p) . \\
\tau=\frac{s-m^{2}}{2 \omega \cdot p}
\end{gathered}
$$

In our case $a_{1}{ }^{i}, b_{1}{ }^{i j}, b_{2}{ }^{i j}$ are constants depending on i only

Necessary condition: the physical on-mass shell vertex function should not depend on ω

$$
b_{2}{ }^{i=0, j=0}\left(s=m^{2}\right)=0
$$

Solution without contact term

Equations:

Solution:

$$
\begin{gathered}
b_{1}^{i j}=\frac{g_{A}}{F_{0}} m a_{1}^{0}-\frac{g_{A}}{2 F_{0}} \frac{\left(m_{1}+m\right)\left(m_{1}+m_{i}\right)}{\left(m+m_{i}\right)} a_{1}^{1} \\
b_{2}^{i j}=\frac{g_{A}}{2 F_{0}} \frac{\left(m_{1}^{2}-m^{2}\right)\left(m-m_{i}\right)}{2 m} a_{1}^{1} .
\end{gathered}
$$

The condition $\quad b_{2}{ }^{i=0, j=0}\left(s=m^{2}\right)=0 \quad$ is satisfied automatically

Solution with contact term

$$
b_{2}{ }^{i=0, j=0}\left(s=m^{2}\right)=\text { const } \neq 0
$$

We need a new ω-dependent counterterm to kill it

$$
L_{i n t}=-\frac{1}{2} \frac{g_{A}}{F_{0}} \bar{\Psi} \gamma^{\mu} \gamma_{5} \tau^{b} \partial_{\mu} \phi^{b} \Psi-\frac{1}{4 F_{0}^{2}} \bar{\Psi} \gamma^{\mu} \vec{\tau} \cdot \vec{\phi} \times \partial_{\mu} \vec{\phi} \Psi+i Z_{3} \bar{\Psi} \psi \gamma_{5} \tau^{b} \phi^{b} \Psi+\ldots
$$

With this counterterm $b_{2}{ }^{i=0, j=0}\left(s=m^{2}\right)=0$

Perspectives

\square Test the presented strategy for 1 nucleon and 1 pion
Calculate: $\quad m_{N}\left(m_{\pi}\right)$ dependence
scalar and electromagnetic form factors

Calculations for 1 nucleon and 2 pions

Calculations are already done for the Yukawa model (scalar meson)

