Study of the GDH Sum Rule on ³He at HI y S

- Introduction
- Three-body Photodisintegration of ³He @ HI _Y S
- Preliminary Results from May 2008
- Future Plan
- Summary

Haiyan Gao TUNL and Duke University Chiral Dynamics Workshop, Bern, Switzerland, July 9, 2009

No Stable Free Neutron Target

- Polarized deep inelastic
 scattering spin structure of neutron
 - Spin-dependent quasielastic scattering from ³He
 - neutron EM form factors

About 88%

Importance in testing state-of-the-arts Three-body calculations, EFT calculations Excellent system to study three-body force effect (D. Phillips's talk)

Polarized ³He

GDH sum rule

$$I^{GDH} = \int_{V_{thr}}^{\infty} \frac{d\nu}{\nu} \left[\sigma_N^P(\nu) - \sigma_N^A(\nu) \right] = \frac{4\pi^2 \alpha}{M_N^2} \kappa_N^2 I$$

 $\sigma_N^P \sigma_N^A$ spin dependent total photon-absorption cross section

 \mathcal{K}_N anomalous magnetic moment

Fundamental Interpretation: any particle with a nonzero anomalous magnetic moment has internal structure and therefore an excitation spectrum

- Based on general principles of physics: Lorentz and Gauge invariance, crossing symmetry, causality and unitarity
- First measurement on proton up to 800 MeV (Mainz) and up to 3 GeV (Bonn) agree with GDH with assumptions for contributions from un-measured regions (new measurements at Mainz).

P: target spin parallel to the photon spin A: spins anti-parallel to the photon spin

Vince Sulkosky (Tuesday)

GDH Integral on ³He

Few-body calculations of GDH integral up to V_{π}

Skibinski, Golak et al. PRC72, 4 4 044002 (2005), and private communications

Calculations provided by Deltuva et al, Golak et al.

Color	Theories	GDH integral
Green	CDB+ Δ + Siegert RCO+ MEC(h.o.)	162 <i>µb</i>
Blue	CDB+ Siegert including RCO+ MEC(h.o.)	152 <i>µ</i> b
Black	AV18+explicit MEC	110 <i>µb</i>
Yellow	CD Bonn +Siegert +MEC(h.o.)	28.7 µb
Magenta	AV18+implicit MEC via Siegert	26.3µb

Compare to

GDH Integral and integrand: two-body and three-body

ΗΙγS

- Nearly Mono-energetic γ-rays
 - Tunable Energies
 - Energy resolution selected by collimator size
- Linearly (circularly) Polarized γ-rays
- High Beam Intensities
- Pulsed Beam
 - TOF Techniques to reduce non-beam related backgrounds

The Upgraded HI_YS Facility

• 1.2-GeV Booster Injector

GDH with HI_yS at the DFELL

The HIGS facility along with a high pressure polarized ³He target is an ideal place for this measurement.

Two-body breakup and three-body breakup measurements are needed Three-body breakup dominates the integral at low energies

Spin exchange optical pumping Optical pumping^[1] Spin exchange^[2]

Polarize Rb outer shell electron

W. Happer. Rev. Mod. Phys., 44:169, 1972.
 T. Walker and W. Happer. Rev. Mod. Phys., 69:629, 1997.

Spin exchange between Rb electrons $\leftarrow \rightarrow {}^{3}$ He nuclei Hyperfine

Spin exchange between (for Rb/K hybrid) Rb electrons $\leftarrow \rightarrow$ K atoms K electrons $\leftarrow \rightarrow$ 3He nuclei Hyperfine

First Experiment@FEL, May 2008

Detector Angles

A quantitative PSD cut approach

Event selection range

Method 1: Integrate all the gammas before the gamma flash of all detectors, and use this as flux normalization Method 2: Integrate the gamma flash.

Asymmetry Preliminary Result

Calculation: Deltuva et al. (see previous slide)

Findings from Last May's HIGS run and new developments

- We successfully conducted a first asymmetry measurement, results are consistently with Deltuva's theoretical results (Golak et al's also).
- Large neutron background from GE180 glass material and air made data analysis difficult and reduced experimental statistics.
- A new Sol-Gel coated pyrex ³He target was Constructed and tested since, achieved 64% polarization using an additional narrowed line-width laser
- Automated target motion system designed, is being built and tested

Beam Test of sol-gel coated pyrex target, May 2009

Automated motor control made target switch faster and easier, reduce overhead time. Six layers (from top to bottom): Al, D_2O , empty, N_2 , D_2 , ³He.

Findings from May Test Run

• Sol-Gel coated pyrex glass has fewer background events, 40% less yield compared with GE180.

Experimental challenges

- Flux: we request stable and high flux, at least 5*10⁷/s
- Flux measurement: it is crucial for helicity-dependent cross section difference measurement, we need to know relative flux measurement to better than 1%.
- Photon flux monitor using downstream D₂O target, needs better shielding of neutrons.
- Need to make a vacuum pipe between the beam source and target. Reduce scatterings from the air.
- GEANT4 simulation will help to optimize the experimental configuration

Projections @10,20 MeV

Projection@ 30, 40 MeV

Summary

- We have performed a first asymmetry measurement from three-body photodisintegration of ³He
- We requested 240 hrs HIγS beam time with a minimum photon flux of 5*10⁷/s for a photon energy spread of 3% to the PAC recently.
 - Measurement will test state-of-the-art 3body calculations, investigate three-body force effect,...
- Ultimate goal is to determine GDH integral on ³He from 2body breakup threshold to pion production threshold.

Supported by U.S. Department of Energy under contract number DE-FG02-03ER41231

Projection: Asy VS. Εγ

Theoretical calculations all from Deltuva, same notations in GDH plot

Calculations: Deltuva et al. And Golak et al. (see previous slide)

