Light quark masses

H. Leutwyler
University of Bern

Chiral Dynamics, July 6 2009

Standard Model at low energies

- Low energies ($E \ll M_{
 m W}$): weak interaction is frozen
- → Standard Model reduces to QCD + QED
- Lagrangian only involves g, θ, e , fermion masses
- \Rightarrow Precision theory for cold matter $(T \ll M_{\rm W})$, size and structure of atoms, solids, etc.
- QED is infrared stable, characterized by pure number, which happens to be small, 1/137
- ⇒ QED can be accounted for with perturbation theory
- At low energies: SM = QCD + corrections

Chiral symmetry

- ullet QCD with N_f massless quarks: Hamiltonian has an exact symmetry, $\mathsf{SU_L}(N_f) imes \mathsf{SU_R}(N_f)$
- ullet |0
 angle is symmetric only under the subgroup $\mathrm{SU_{L+R}}(N_f)$ Symmetry is hidden, "spontaneously broken"
- \Rightarrow Spectrum contains $N_f^2 1$ Goldstone bosons
- $m m_{\sf u}$ and $m_{\sf d}$ happen to be small
- \Rightarrow SU_L(2)×SU_R(2) is an approximate symmetry of QCD
 - broken spontaneously: $|0\rangle$ not invariant
 - broken explicitly: \mathcal{L}_{QCD} not invariant Symmetry broken by mass term $m_{\sf u} \bar{u} u + m_{\sf d} \bar{d} d$, but since $m_{\sf u}, m_{\sf d}$ are small, the breaking is weak

Hidden symmetries in particle physics

Already in 1960, Nambu realized that

- 1. $SU_L(2) \times SU_R(2)$ is an approximate symmetry of the strong interaction
- 2. The symmetry is spontaneously broken:|0⟩ invariant only under the isospin subgroup SU(2)
- 3. The spontaneous breakdown of an exact symmetry entails massless particles
- 4. For the strong interaction, the pions play this role
- 5. The pions are not massless, only light, because the symmetry is only an approximate one

Nobel Prize 2008

Explains why the energy gap of the strong interaction is so small: $M_{\pi} \simeq 140 \text{ MeV}$ When Nambu proposed this idea, the origin of the symmetry was mysterious Approximate symmetries? Partially conserved currents? For gauge theories like QCD, approximate chiral symmetries do occur naturally

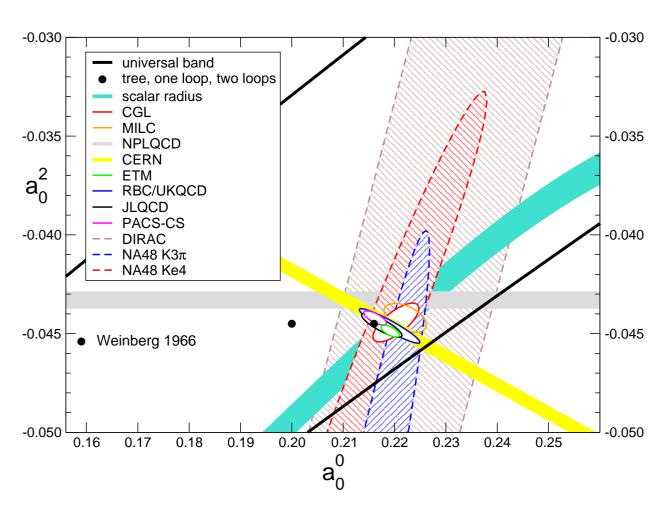
Chiral perturbation theory based on $SU(2) \times SU(2)$

• Expansion in powers of m_u, m_d yields a very accurate low energy representation of QCD

Low energy pion physics is a precision laboratory Theoretical tools: χ PT, lattice, dispersion theory

- Limitations:
 - Low energies
 - e.m. interaction must properly be accounted for
 - Calculations cannot be done on back of an envelope

Illustration: $\pi\pi$ scattering lengths



Lattice results for $\bar{\ell}_3, \bar{\ell}_4$ are translated into values for a_0^0, a_0^2 Contributions from higher order couplings are tiny

Guo + Sanz-Cillero arXiv:0904.4178

Extension to $SU(3) \times SU(3)$

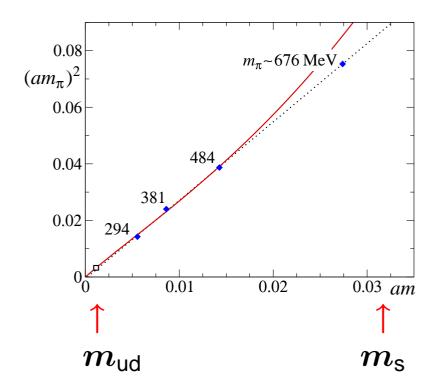
• In the theoretical limiting case $m_u = m_d = m_s = 0$ QCD acquires an exact SU(3)_L×SU(3)_R symmetry

Is m_s small enough for this to represent a useful approximate symmetry?

- Theoretical reasoning
 - SU(3)_{L+R} (eightfold way) is an approximate symmetry
 - ullet Typical size of SU(3)_{L+R} breaking: $rac{F_K}{F_\pi}=1.19\pm0.01$
 - Only coherent way to understand this in QCD: The mass differences $m_{\rm s}-m_{\rm d}$, $m_{\rm d}-m_{\rm u}$ must be small, can be treated as perturbations
 - ullet Since $m_{ extsf{u}}, m_{ extsf{d}} \ll m_{ extsf{s}}$
 - $\Rightarrow m_s$ is small, $SU(3)_L \times SU(3)_R$ must be an approximate symmetry, breaking not larger than for $SU(3)_{L+R}$

Expansion in powers of $m_{ extsf{u}}, m_{ extsf{d}}, m_{ extsf{s}}$

- ullet Expansion in powers of $m_{
 m u}, m_{
 m d}, m_{
 m s}$ ought to work, but expect convergence to be comparatively slow $m_{
 m ud} \equiv rac{1}{2}(m_{
 m u}+m_{
 m d})$
- ullet Lattice results: $M_\pi^2 \propto m_{
 m ud}$ holds out to $10 imes m_{
 m ud}^{
 m phys}$
- $m m_{
 m s}$ is larger than that: $m_{
 m s} \simeq 27 \! imes \! m_{
 m ud}$



Compare

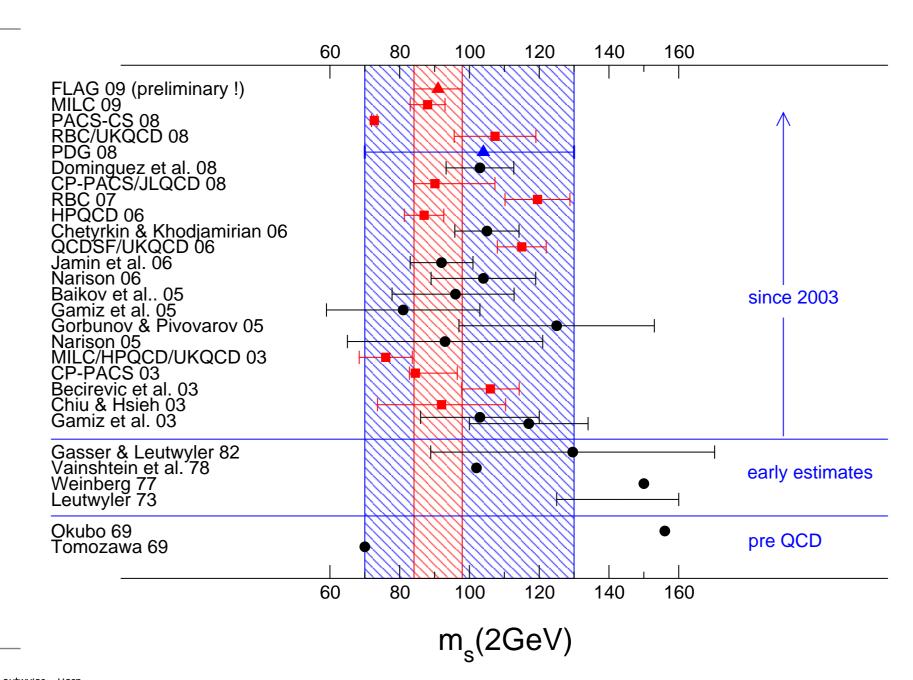
$$rac{F_K}{F_\pi} \simeq 1.19$$

Lüscher, 2005

Three light quarks: interface between lattice and $\chi {\sf PT}$

- Steady progress in simulating QCD with light quarks
- Still, the quark masses used are too large for the NLO formulae of χPT to work
- ullet M_{π} OK, but M_{K} too large
- Three options
 - Use smaller quark masses
 - Extrapolate only in $m_{\rm u}, m_{\rm d}$, keep $m_{\rm s}$ fixed
 - Account for NNLO contributions
- Some lattice analyses do allow for NNLO contributions, but the chiral logarithms are accounted for only to NLO
- discrepancies between different lattice results
 In part, these may arise from nonperturbative renormalization effects
 Some of the collaborations still use perturbative renormalization
- \Rightarrow Illustrate this with the results for $m_{\rm s}$

Mass of the strange quark



Conclusion for m_{s}

- Lattice and sum rule results agree within errors
- Uncertainties in lattice determinations steadily become smaller, will decrease further

Concerning the relative size of the light quark masses, the situation is somewhat less satisfactory – I now turn to that

Mass formulae at tree level of χPT

$$M_{\pi^+}^2 = (m_{ extsf{u}} + m_{ extsf{d}})\,B_0 + O(m^2) \ M_{K^+}^2 = (m_{ extsf{u}} + m_{ extsf{s}})\,B_0 + O(m^2) \ M_{K^0}^2 = (m_{ extsf{d}} + m_{ extsf{s}})\,B_0 + O(m^2) \ M_{K^0}^2 = (m_{ extsf{d}} + m_{ extsf{s}})\,B_0 + O(m^2) \ M_{K^0}^2 = (m_{ extsf{d}} + m_{ extsf{s}})\,B_0 + O(m^2) \ M_{K^0}^2 = (m_{ extsf{d}} + m_{ extsf{d}})\,B_0 + O(m^2) \ M_{K^0}^2 = (m_{ extsf{d}} + m_{ extsf$$

- $ightharpoonup \chi$ PT relates B_0 to the quark condensate, but does not predict its size \Rightarrow no prediction for size of quark masses
- Account for e.m. self energies at tree level of χPT and drop effects of second order in isospin breaking

$$rac{m_{ ext{d}}}{m_{ ext{d}}} = rac{M_{K^+}^2 - M_{K^0}^2 + 2 M_{\pi^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 0.56$$
 $rac{m_{ ext{S}}}{m_{ ext{d}}} = rac{M_{K^+}^2 + M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 20.2$ Weinberg 1977

• Corrections from higher orders? Could they strongly modify these numerical values? $m_u = 0$?

$$m_{\mathsf{u}} = \mathbf{0}$$
 ?

Suppose $m_{\rm u}$ vanishes. The formula for $m_{\rm u}/m_{\rm d}$ then turns into a prediction for $M_{K^0}\!-\!M_{K^+}$:

$$M_{K^0}\!-\!M_{K^+} = rac{2M_{\pi^0}^2\!-\!M_{\pi^+}^2}{M_{K^0}\!+\!M_{K^+}} \left\{1+O[m]
ight\}$$

$$m_{\mathsf{u}} = \mathbf{0}$$
 ?

Suppose $m_{\rm u}$ vanishes. The formula for $m_{\rm u}/m_{\rm d}$ then turns into a prediction for $M_{K^0}-M_{K^+}$:

$$M_{K^0}\!-\!M_{K^+}=rac{2M_{\pi^0}^2\!-\!M_{\pi^+}^2}{M_{K^0}\!+\!M_{K^+}}\left\{1+O[m]
ight\} \ \uparrow \ 3.9 \ ext{MeV}$$

- \Rightarrow If $m_{\rm u}$ vanishes then χ PT fails:
 - chiral series cannot be truncated at low orders
 - $SU(3)_L \times SU(3)_R$ not an approximate symmetry
 - Gell-Mann-Okubo formula an accident, etc.
- Very generous range for which a truncation of the chiral expansion is halfway legitimate:

$$0.25 < m_{
m u}/m_{
m d} < 0.7$$

Corrections of NLO

ullet Work with the ratios S and Q

$$S \equiv rac{m_{ extsf{s}}}{m_{ extsf{ud}}} = rac{2 M_K^2}{M_\pi^2} \left\{ 1 - \Delta_{ extsf{M}}
ight\} - 1$$

$$Q^2 \equiv rac{m_{
m s}^2 - m_{
m ud}^2}{m_{
m d}^2 - m_{
m u}^2} = rac{M_K^2 - M_\pi^2}{M_{K^0}^2 - M_{K^+}^2} rac{M_K^2}{M_\pi^2} \left\{ 1 - \Delta_{
m Q}
ight\},$$

- ullet Remarkably, the second one does not receive a correction at NLO: $\Delta_{
 m Q}=O[m^2,e^2]$ Gasser & L. 1985
- Insert Weinberg's leading order ratios $\Rightarrow Q = 24.3$.
- \Rightarrow In the plane of $m_{\rm s}/m_{\rm d}$ versus $m_{\rm u}/m_{\rm d}$, a given value of Q corresponds to an ellipse
- Critical input here is the "Dashen theorem": e.m. self energies are accounted for only at tree level

$\eta o \pi^+\pi^-\pi^0$

m g decay allows an independent determination of Q

Gasser & L. 1985

- In this transition, the e.m. contributions are suppressed
 Bell & Sutherland 1968
- Dispersive analysis of the decay amplitude

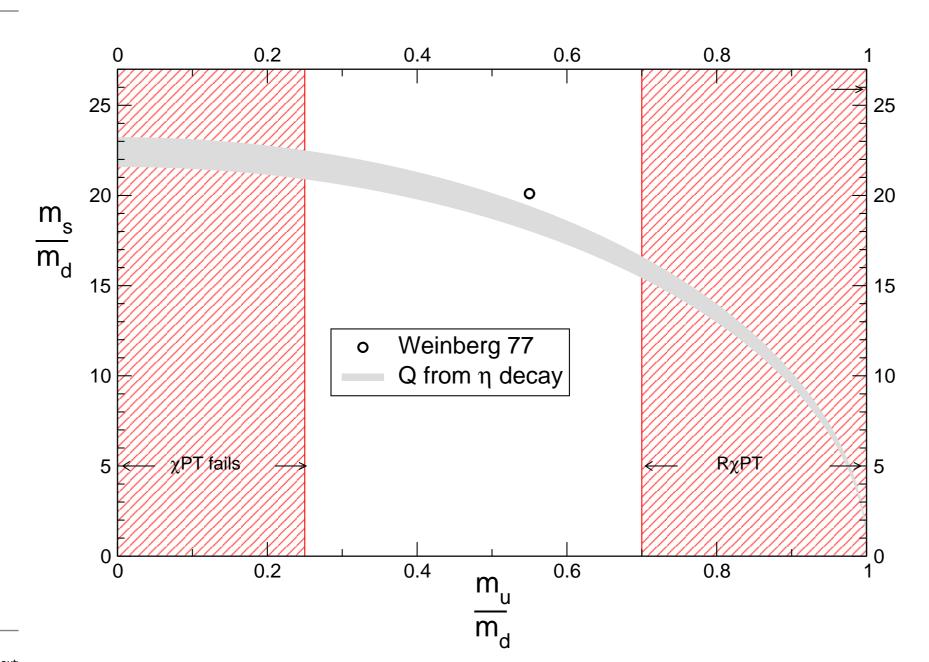
Kambor, Wiesendanger & Wyler 1996, Anisovich & L. 1996, Walker 1998

⇒ talk by Stefan Lanz in WG 1

• Update of Walker's calculation with the current experimental information $\Rightarrow Q = 22.4 \pm 0.8$, to be compared with Q = 24.3 from Dashen theorem

H. Leutwyler – Bern

Allowed range of mass ratios



Where on the ellipse?

- **●** $\not\equiv$ scalar probe analogous to γ , W[±]
- → Not all effective coupling constants can be determined from phenomenology alone
- → Position on ellipse cannot be determined from phenomenology alone
 Kaplan & Manohar 1986
- In particular, all determinations of the ratio

$$R \equiv rac{m_{
m S}\!-\!m_{
m Ud}}{m_{
m d}\!-\!m_{
m U}} = rac{2\,Q^2}{S\!+\!1}$$
 compares breaking of SU(3) and SU(2)

face this problem:

- Isospin breaking in other multiplets
- $\rho \omega$ mixing
- $\Gamma_{\psi'
 ightarrow \psi \pi^0}/\Gamma_{\psi'
 ightarrow \psi \eta}$

Large N_c

- ullet Problem disappears in the large N_c limit
- In this limit, the η' also becomes a Goldstone boson
- \Rightarrow Can extend χ PT to include the η' , systematic expansion in powers of $m_{\rm u}$, $m_{\rm d}$, $m_{\rm s}$ and $1/N_c$
- In this framework, there is no ambiguity at NLO
- Triangle anomaly yields a prediction also for $\Gamma_{\eta' \to \gamma\gamma}$ Can use this to pin down all unknowns at NLO

Kaiser 1997

η and η ' at large N_c

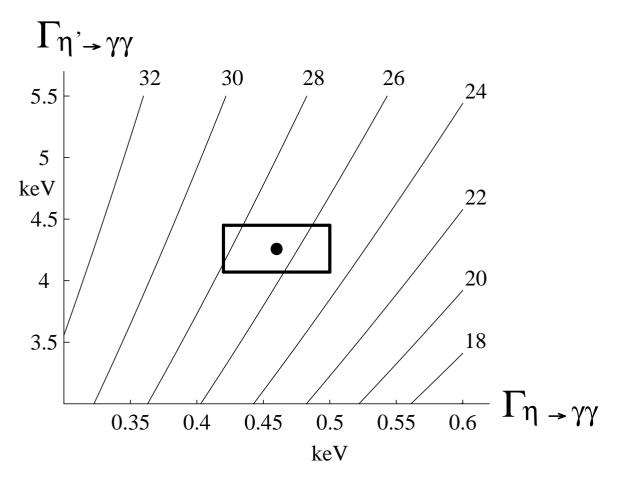


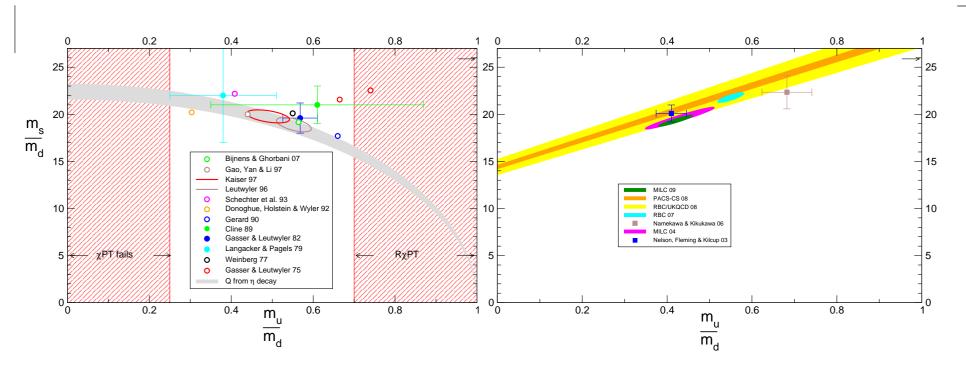
Figure taken from diploma work of Roland Kaiser (1997)

Tilted lines: value of $S = m_s/m_{ud}$, rectangle: experiment

Central value found in this determination: S = 26.6

Barely differs from leading order result: S = 25.9

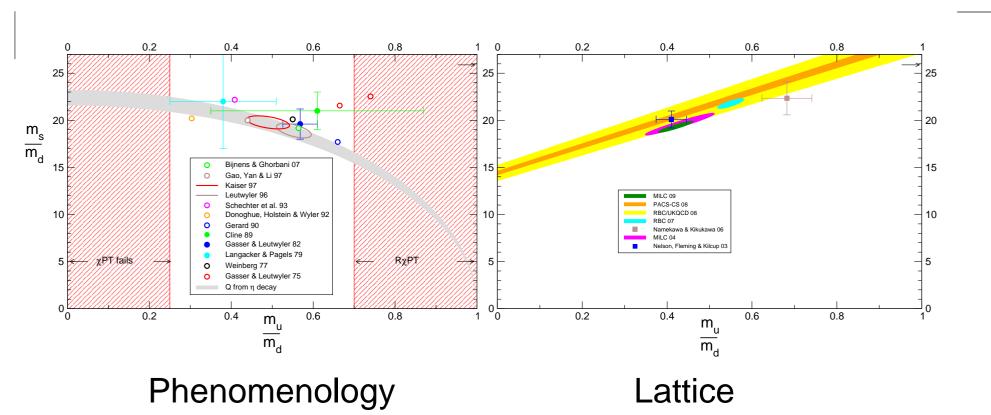
Results for quark mass ratios



Phenomenology

Lattice

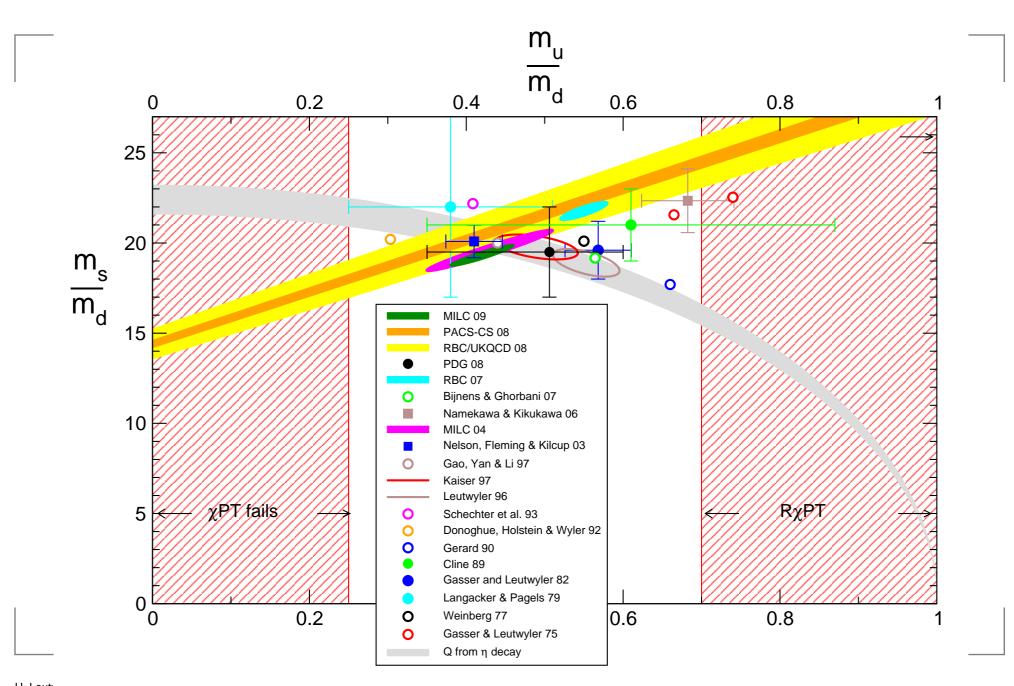
Results for quark mass ratios



None of the lattice results for $m_{\rm u}$ is consistent with the solution $m_{\rm u}=0$ of the strong CP problem

The MILC collaboration rules this solution out at 10 σ

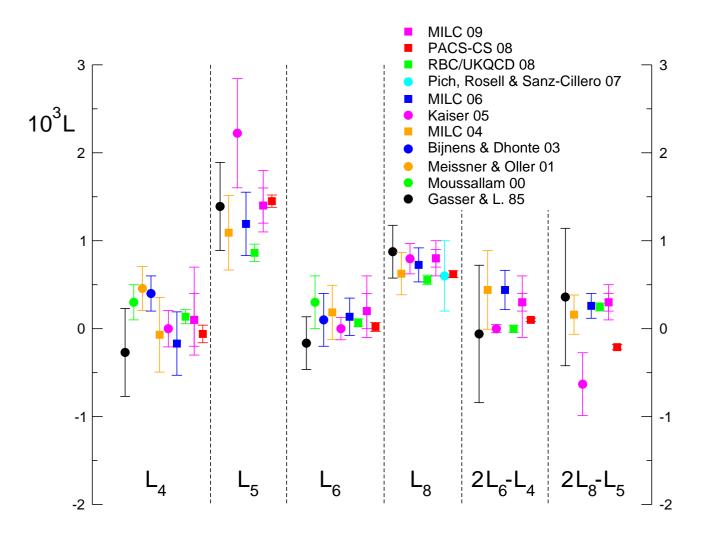
Comparison



Effective coupling constants

- Apart from L_4, L_6 , all of the SU(3)_L×SU(3)_R couplings of NLO can be determined from experiment Gasser + L. 1985
- L_4, L_6 are suppressed in large N_c limit, violate OZI rule
- \Rightarrow Expect L_4, L_6 to be small (at a running scale where large logarithms do not occur, such as $\mu = M_n$)

NLO couplings: L_4, L_5, L_6, L_8



Numerical values shown refer to running scale $\mu=M_{
ho}$ Lattice results for L_4,L_5,L_6,L_8 agree with phenomenology within errors The large N_c suppression of L_4,L_6 is confirmed At NLO, the position on the ellipse is determined by $2L_8-L_5$

Conclusion

- $m_u \neq 0$ Nature solves the strong CP problem differently
- Lattice yields remarkably coherent and significant results for pion physics already now
- \Rightarrow SU(2)×SU(2) χ PT has become a precision tool
- Extension to kaon physics is making progress
 - M_K = 600 MeV is beyond reach of NLO χ PT
 - Representations of many quantities of interest are available to NNLO of χ PT \Rightarrow talk by Hans Bijnens
 - Main problem at NNLO: the current knowledge of the LECs is rudimentary
 - NNLO formulae are needed in a form suitable for the analysis of lattice data

H. Leutwyler – Bern

Conclusion ctd.

- $m_{\rm s}/m_{\rm d}$ and $m_{\rm s}$ are now known to about 10 %
- $m m_{
 m u}/m_{
 m d}$ is known to about 20 %
- For the physical values of $m_{\rm u}$, $m_{\rm d}$, $m_{\rm s}$, the leading order terms in the chiral perturbation series of M_{π} , M_{K} , F_{π} , F_{K} do represent a good approximation
- Lattice results indicate that the NLO contributions do dominate the corrections
- $\Rightarrow \chi$ PT does appear to work
- Significant progress at the interface between lattice and effective field theory methods is ante portas