

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

### Hadronic atoms

Akaki Rusetsky

### Helmholtz-Institut für Strahlen- und Kernphysik und BCTP, Universität Bonn, Germany

Chiral Dynamics 2009, Bern, 7 July 2009

### Plan

- Introduction
- Physics background
- Kaonic hydrogen
- EFT approach to kaonic deuterium: going beyond the static approximation
- Conclusions

# An example: $\pi^+\pi^-$ -atom

- Almost Coulombic bound state, decays predominately into  $\pi^0\pi^0$
- $\langle \mathbf{p}^2 \rangle^{1/2} = \alpha M_\pi/2 \simeq 0.5 \text{ MeV} \ll M_\pi$
- $r_B = 2/\alpha m_\pi \simeq 387 \text{ fm} \gg R_{
  m str}$
- $E_B = M_{\pi} \alpha^2 / 4 + O(\alpha^3) \simeq 2 \text{ keV} \ll M_{\pi}$

#### Measurable characteristics:

- Energy shift  $\Delta E^{\rm str} \ll E_B$
- Decay width  $\Gamma \ll E_B$



### **DGBT** formula

S. Deser, M.L. Goldberger, K. Baumann and W.E. Thirring, Phys. Rev. 96 (1954) 774

$$\Delta E^{\rm str} - \frac{i}{2} \Gamma = -2\alpha^3 \mu_c^2 \,\mathcal{A} + O(\alpha^4)$$

Real and imaginary parts of the threshold amplitude:

$$\operatorname{\mathsf{Re}}\nolimits\mathcal{A} \sim 2a_0 + a_2 + \cdots$$

$$\operatorname{Im} \mathcal{A} \quad \sim \quad p^{\star} (a_0 - a_2)^2 + \cdots$$

 $p^{\star}$  is the relative momentum of the  $\pi^0\pi^0$  pair

Due to a huge difference in the strong and atomic scales, the atomic spectrum is expressed solely in terms of the effective-range expansion parameters of the  $\pi\pi$  scattering amplitude

### Physics background: $\pi^+\pi^-$

- Extract the combination |a<sub>0</sub> a<sub>2</sub>| of the scattering lengths from the measured lifetime of the π<sup>+</sup>π<sup>-</sup> atom in the ground state (DIRAC at CERN → Yazkov)
- Compare with the theoretical prediction

$$a_0 = 0.220 \pm 0.005$$
,  $a_2 = -0.0444 \pm 0.0010$   
 $a_0 - a_2 = 0.265 \pm 0.004$ 

G. Colangelo, J. Gasser and H. Leutwyler, NPB 603 (2001) 125

- Test large/small condensate scenario in QCD
- Alternative methods:

Cusps in  $K \to 3\pi$  decays ( $\to$  Giudici)  $K_{e4}$  decays ( $\to$  Bloch-Devaux)

## Physics background: $\pi K$

- Allows to extract the combination |a<sub>1/2</sub> − a<sub>3/2</sub>| of the πK scattering lengths from the lifetime measurement (DIRAC at CERN → Yazkov, Benelli)
- Tests the convergence of the chiral expansion in the meson sector in  $SU(3) \times SU(3)$  ChPT

V. Bernard, N. Kaiser and U.-G. Meißner, NPB 357 (1991) 129
J. Bijnens, P. Dhonte and P. Talavera, JHEP 0405 (2004) 036
J. Schweizer, PLB 625 (2005) 217

- Potentially, the measurement of the energy shift of the πK atom provides an opportunity to test the large/small condensate scenario in QCD with three flavors
  - $\hookrightarrow$  Flavor-dependence of the quark condensate

### Physics background: $\pi^- p$ and $\pi^- d$

• High-precision measurement of the  $\pi N$  scattering lengths (Pionic Hydrogen collaboration at PSI)

Experimental uncertainty: energy shift 0.2 %, width 2% Theoretical uncertainty: isospin-breaking effects  $(\rightarrow \text{Hoferichter})$ 

- $\pi NN$  coupling constant through GMO sum rule
- Pion-nucleon  $\sigma$ -term through dispersion relations + ChPT
- Strangeness content of the nucleon

## Physics background: $K^-p$ and $K^-d$

 Extracting the antikaon-nucleon scattering lengths a<sub>0</sub>, a<sub>1</sub> from the <u>combined</u> analysis of the kaonic hydrogen and kaonic deuterium data (DEAR/SIDDHARTA at DAFNE)

Since scattering lengths are strongly absorptive, the measurement of the kaonic hydrogen alone does not suffice

- Confronting experimental result with the coupled-channel unitarized baryon ChPT in the S = -1 sector
- Solving the problem of incompatibility of scattering data with DEAR result
- Restricting the sub-threshold energy dependence of the  $K^- p$  amplitude

 $\rightarrow$  implications for the interactions of  $K^-$  with medium

### Experimental status: kaonic hydrogen

$$\Delta E_{1s}^{\mathrm{str}} = 193 \pm 37 \text{ (stat)} \pm 6 \text{ (syst) MeV}$$

$$\Gamma_{1s} = 249 \pm 111 \text{ (stat)} \pm 30 \text{ (syst) MeV}$$

**DEAR at DAFNE** 

U.-G. Meißner, U. Raha and AR, EPJC 35 (2004) 349

$$\Delta E_{1s} - i \frac{\Gamma_{1s}}{2} = -2\alpha^3 \mu^2 a_p \left( 1 - \underbrace{2\mu\alpha(\ln\alpha - 1)a_p}_{\text{Coulomb}} \right) + \cdots$$

 $\hookrightarrow$  Precise determination of  $a_p$ :

$$a_p = \frac{\frac{1}{2} (a_0 + a_1) + q_0 a_0 a_1}{1 + \frac{q_0}{2} (a_0 + a_1)}, \qquad q_0 = \text{threshold momentum of } \bar{K}^0 n$$

### **Summing up Coulomb bubbles**



Isospin breaking in the  $\overline{K}N$  potential?

see also: Y. Yan, arXiv:0905.4818

### Constraints imposed by kaonic hydrogen data



### Using kaonic deuteron data to determine $a_0, a_1$

 $\rightarrow$  Extract  $A_{\bar{K}d}$  from the experiment (SIDDHARTA at DAFNE)

 $\hookrightarrow$  Relate  $a_0, a_1$  explicitly to  $A_{\bar{K}d}$  through multiple-scattering theory

Systematic uncertainty?

- Genuine uncertainty: 3-body force contributes up to a few %
- Isospin breaking: under control
- Going beyond static approximation:

Potentially large corrections (up to 30%) Can be evaluated systematically in EFT

# EFT approach to $ar{K}d$ scattering

V. Baru, E. Epelbaum and AR, arXiv:0905.4249

• Different momentum scales  $\rightarrow$  multiple-scattering expansion

 $NN, \bar{K}NN$  : one-pion exchange

- $\bar{K}N$  : two-pion exchange
- The convergence of the series is controlled by  $a \cdot \langle \frac{1}{r} \rangle \simeq 1$ , where  $\langle \frac{1}{r} \rangle \simeq 0.5 \text{ fm}^{-1}$ . S-wave scattering lengths are large due to the presence of the subthreshold  $\Lambda (1405)$  resonance
  - $\rightarrow$  Re-summation (is done in the <u>static</u> approximation)
- Exact solution of Faddeev equations:
  - $\rightarrow$  Retardation effects moderate albeit  $\xi = M_K/m_N \simeq 0.5$
  - Need to be understood in a systematic approach based on EFT

### **Second order**



$$A_{\bar{K}d}^{\text{doubl. scatt.}} = \frac{8\pi\mu_d M_K}{\mu^2} \left(R_a + R_b + R_c\right)$$

$$R_i = R_i^{\text{stat}} + \xi^{1/2} R_i^{(1)} + \xi R_i^{(2)} + \xi^{3/2} R_i^{(3)} + \cdots$$

 $\hookrightarrow$  Calculate  $R_i^{(1)}, R_i^{(2)}, \ldots$ , using <u>uniform expansion</u> method

### **Uniform expansion method**

R. E. Mohr *et al*, Ann. Phys. 321 (2006) 225

see also M. Beneke and V. A. Smirnov, NPB 522 (1998) 321: Threshold expansion

Low-momentum regime  $\longrightarrow$  half-integer powers of  $\xi$ 

$$\frac{\mathbf{l}^2}{2M_K} \sim \frac{\mathbf{p}^2}{2m_N} \quad \Rightarrow \quad \mathbf{l} \sim \sqrt{\xi} \mathbf{p} \,, \quad \mathbf{p} \sim \langle \frac{1}{r} \rangle$$

High-momentum regime  $\longrightarrow$  integer powers of  $\xi$ 

 $\mathbf{l} \sim \mathbf{p} \sim \langle \frac{1}{r} \rangle$ 

Intermediate regime

$$\sqrt{\xi}\mathbf{p}\ll\mathbf{l}\ll\mathbf{p}$$

 $\hookrightarrow$  Expand the integrand in Taylor series in each region separately

### **Cancellation of leading corrections**

$$R = R^{\text{stat}} + \xi^{1/2} R^{(1)} + \xi R^{(2)} + \xi^{3/2} R^{(3)} + \cdots$$

see also: G. Fäldt, Phys. Scripta 16 (1977) 81; V. Baru et al, PLB 589 (2004) 118

- Isospin-odd channel: Pauli-selection rules  $\longrightarrow R^{(1)}_{-} = 0$
- Isospin-even channel: at leading order in  $\xi$ ,

$$R_{+}^{(1)} \sim \int \frac{d^3 \mathbf{p} d^3 \mathbf{q} d^3 \mathbf{l}}{(2\pi)^6} \Psi(\mathbf{p}) \left( G_{NN}(\mathbf{p}, \mathbf{q}; E(\mathbf{l})) - \frac{\delta^3(\mathbf{p} - \mathbf{q})}{\mathbf{l}^2 / 2M_K} \right) \Psi(\mathbf{q})$$

←→ Vanishes at leading order due to the orthogonality of the bound-state and continuum wave functions

### **Convergence of the expansion**

Corrections to the isospin-odd amplitude (the kinematical factor  $(1 + \xi)^{-1}$  is not expanded)



### **Multiple-scattering series**

V. Baru, E. Epelbaum and AR, in progress



- Assume retardation correction perturbative in contrast to static interactions
- The terms at  $O(\xi^{1/2})$  do not vanish any more, but are numerically small (preliminary)

#### Conclusions

- $\pi\pi$  and  $\pi K$  atoms: theory ahead of the experiment
- $\pi N$  and  $\pi d$  atoms: high-precision data available
- Need to address isospin breaking in pionic deuterium at next-to-leading order
   V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D. Phillips, in progress
  - $\rightarrow$  Isospin breaking in the hydrogen energy and width at  $O(p^4)$
- $\bar{K}N$  and  $\bar{K}d$  atoms: progress is foreseen both on experimental and theoretical sides:
  - Need to achieve a systematic description of the retardation corrections within the <u>EFT approach</u>

V. Baru, E. Epelbaum, AR, in progress