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 Low-lying resonances in chiral EFT

Meson sector: rho-meson

excitation energy 

Baryon sector: Delta-isobar

excitation energy ≈M∆ −MN # 300 MeV

The chiral PT with pion and nucleon fields is 
limited by a lowest-lying resonance:

≈ mρ −mπ # 640MeV
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 How to have a resonance in EFT?

PT: explicit field (d.o.f.) with M>2m 
(or,              ) and         

e.g., muon, tau, W-, Z-bosons  

Non-PT: quasibound state from a 
Dyson-Schwinger, Bethe-Salpeter eqs 

e.g., positronium

M >
∑

i

mi g != 0
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 Effective Lagrangians with ∆(1232) (I=3/2, JP=3/2+)  

Field: iso-quartet Rarita-Schwinger field  ψµ
i = (Δµ

++, Δµ
+, Δµ

0, Δµ
-).

Lagrangian:
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 Effective Lagrangians with ∆(1232) (I=3/2, JP=3/2+)  

Field: iso-quartet Rarita-Schwinger field  ψµ
i = (Δµ

++, Δµ
+, Δµ

0, Δµ
-).

Lagrangian:

The couplings are also 
required to be gauge 
symmetric, to ensure 
decoupling of the 
spin-1/2 components – 
higher-spin constraints.

Spin-3/2 aspects:
[V.P., PRD (1998), PLB (2001); V.P. & Timmermans, PRC (1999); Deser, V.P. & Waldron PRD (2000);
Lenske & Shklyar (2009); Krebs, Epelbaum & Meissner (2009)]

BχPT (HBχPT) PDG

O(p3) O(p3) + O(p4/∆) O(p4) est. [37]

α(p) 6.8 (12.2) 10.8 (20.8) ±0.7 12.0 ± 0.6

β(p) −1.8 (1.2) 4.0 (14.7) ±0.7 1.9 ± 0.5

TABLE I: Predictions of baryon χPT for electric (α) and magnetic (β) polarizabilities of the proton
in units of 10− 4 fm3, compared with the Particle Data Group summary of experimental values.

As to why these are the predictive powers, any chiral power-counting scheme will tell us
that the expansion of the Compton amplitude begins at order p2, and that p4 is the order
where the first unknown LECs should enter. In between there are p3 and the ∆-excitation
effects. The counting for the latter is itself a subject of controversy related to the issue of
how to count the ∆-nucleon mass difference: ∆ = M∆ − MN ≈ 300 MeV. In the hierarchy
of chiral symmetry breaking scales, ∆ is neither as light as the scale of explicit symmetry-
breaking, mπ ∼ 150 MeV, nor as heavy as the scale of spontaneous symmetry-breaking,
4πfπ ∼ 1 GeV. We treat ∆ as an independent light scale with the power-counting rules
defined in Sect. II.

To recapitulate, in this work we compute the contributions to Compton amplitude up
to, but not including, O(p4) in BχPT with ∆’s. This is a complete next-to-next-to-leading
order (NNLO) calculation which is entirely expressed in terms of only known LECs. The
details of these calculations are given in Sect. III. Polarizabilities and their chiral behaviors
are discussed in Sect. IV while the results for observables are shown in Sect. V.

Some of these results have recently been reported in a letter [54]. The present paper is
more comprehensive and self-contained.

II. CHIRAL LAGRANGIANS AND POWER COUNTING

The method of constructing the chrial SU(2) Lagrangians with pion and nucleon fields
is well known [34, 35, 55], and the inclusion of the ∆-isobar fields in a Lorentz-covariant
fashion has recently been reviewed [56]. We shall list here only on the terms relevant to the
present work. The strong-interaction piece is given by

L(2)
π =

f 2

4
tr

(

∂µU∂µU † + 2B0(UM † + MU †)
)

, (1a)

L(1)
N = N

(

i∂/ − MN + /v + gA a/ γ5

)

N, (1b)

L(1)
∆ = ∆µ

(

iγµνλ ∂λ − M∆ γµν
)

∆ν +
hA

2M∆

[

iN Ta γµνλ (∂µ∆ν) tr(aλτ
a) + H.c.

]

, (1c)

where U is the SU(2) pion field in the exponential parameterization: U = exp(iπaτa/f), f
is the pion decay constant in the chiral limit, M is the mass matrix of light quarks, and B0

is a proportionality factor that can be related with the value of light quark condensate [34].
In turn, N denotes the isodoublet Dirac field of the nucleon, MN is the nucleon mass and
gA is the axial-coupling constant, both taken at their chiral-limit value, and the vector and
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1. Power counting for Delta propagators
and
 

Compton scattering,
pion-nucleon scattering,

pion photo- and electro-production
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Chiral Lagrangians with Δ and power counting

How to count

[Jenkins & Manohar (1991), Hemmert, Kambor & Holstein (1998) … (2006)]

N and Δ propagators:

[ V.P. & Phillips, PRC (2003)] ] p » mπ ,  SN» 1/p = O(1/δ2)

                      »1/Δ = O(1/δ)

p » Δ ,     SN» 1/p = O(1/δ) 

                     »1/(p-Δ-Σ )= O(1/δ3 ) 

S∆

S∆

Σ =                         + … = O(p3) = O(δ3 )
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Total cross-section for Compton scattering at 
NLO

p » mπ p » Δ 
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  Pion-nucleon scattering in the resonance region

Renormalized
NLO propagator
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  Pion-nucleon scattering in the resonance region

Renormalized
NLO propagator

Thursday, July 9, 2009



  Pion-nucleon scattering in the resonance region

Renormalized
NLO propagator

M = 1232MeV,Γ = 115MeV

Data: SAID
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Calculation to NLO in the δ expansion:  

LO

[V.P. & Vanderhaeghen, PRL 95 (2005); PRD 73 (2006)]

Pion Electroproduction (e N -> e N π ) in ∆(1232) region

4 free parameters – LECs corresponding
to GM, GE, GC at Q2=0, and GM radius

Thursday, July 9, 2009



magnetic (M1) & electric (E2) N – ∆ transition
resonant multipoles

2 free parameters at NLO

G*
M = 2.95 G*

E = 0.07  (E2/M1 = -2.4 %)

Data:  MAID 2003 
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W = 1.232 GeV  ,  Q2 = 0.127 GeV2

NLO ChEFT (4 LECs)

   theory  error bands 
due to NNLO

data points : 

MIT-Bates 
(Sparveris et al., 2005) 

  

e p -> e p π  in Δ(1232) region: observables

0

20

40

!
T
 +

 "
 !

L
 (

µ
b
/s

r)

-4

-2

0

2

4

!
L

T
  
(µ

b
/s

r)

-1 -0.5 0 0.5 1
cos #

$

-30

-20

-10

0

10

!
T

T
  
(µ

b
/s

r)

-1 -0.5 0 0.5 1
cos #

$

-2

0

2

4

6

!
’ L

T
  
 (

µ
b
/s

r)

FIG. 9: (Color online) The NLO results for the Θπ dependence of the γ∗p → π0p cross sections
at W = 1.232 GeV and Q2 = 0.127 GeV2. The theoretical error bands are described in the text.

Data points are from BATES experiments [3, 39].
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W = 1.232 GeV  ,  Q2 = 0.127 GeV2

NLO ChEFT (4 LECs)

   theory  error bands 
due to NNLO

data points : 

MIT-Bates 
  (Kirkpatrick et al, 2008)

e p -> e n π  in Δ(1232) region: observables

4

Figure 3: The experimental results are presented along with the corresponding theoretical calculations of MAID, DMT, Sato-
Lee and ChEFT. The shaded band corresponds to the uncertainty of the ChEFT calculation. In (a) the measured cross sections
at θ∗

πq = 44.45◦ are presented. In (b), (c) and (d) the extracted σ0, σTT and σLT are presented respectively.
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2. NNLO Compton scattering and nucleon 
polarizabiltites: 
BChPT vs. HBChPT
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 Leading order pion-nucleon interaction:

Power couniting in BChPT (Nucleon mass)
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Power couniting in BChPT (Nucleon mass)
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tells us that a graph is of O(pn)

LO nucleon self-energy =
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O(m4
π/M (0)

N )

14

 Leading order pion-nucleon interaction:

Power couniting in BChPT (Nucleon mass)

Power counting index:                                                     

tells us that a graph is of O(pn)

LO nucleon self-energy =

LECs [Gasser, Sainio, Svarc (1988); Jenkins & Manonar (1991); 
Becher & Leutwyler (1999);
Gegelia & Japaridze (1999);  Gegelia, Scherer et al. (2003)];
VP & Vanderhaeghen (2006)]
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Analyticity in energy vs. the quark mass

LO nucleon self-energy =
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Analyticity in energy vs. the quark mass

LO nucleon self-energy =
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15

Analyticity in energy vs. the quark mass

LO nucleon self-energy =

IR cuts
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µ = mπ/MN

O(p3) calculations of  the nucleon magnetic moment

16
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FIG. 4: GDH integrands (in units of C/M2) for Born-level pion photoproduction cross sections,

corresponding to Eqs. (15) and (22).

0 0.2 0.4 0.6 0.8 1
mΠ

2"GeV2#

1

2

3

4
Proton magnetic moment

SR

IR

HB

!

0 0.2 0.4 0.6 0.8 1
mΠ

2"GeV2#

0

!1

!2

!3

Neutron magnetic moment

!

FIG. 5: Chiral behavior of the proton and neutron magnetic moments (in nucleon magnetons)

to one loop compared with lattice data. “SR” (dotted lines) represents the full result given by
Eqs. (23), “IR” (blue long-dashed lines) the infrared-regularized relativistic result, “HB” (green
dashed lines) the LNA term in the heavy-baryon expansion Eq. (24). Red solid lines are the

fit of the parametrization in Eq. (30) based on the SR result. Data points are results of lattice
simulations [12]. The open diamonds represent the experimental values at the physical pion mass.
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IR = Infrared regularization [Kubis & Meissner (2001)]
SR = 1st derivative of the GDH sum rule or BChPT [Holstein, VP, Vanderhaeghen PLB (2005)]:Using the latter two expressions we easily verify the consistency conditions given in

Eq. (21c) [14] while, employing the linearized SRs, we obtain:

κ(loop)
p =

M2

πe2

∞
∫

ωth

dω

ω
∆σ(p)

1p

=
g2

(4π)2

{

1 −
µ (4 − 11µ2 + 3µ4)

√

1 − 1
4µ

2
arccos

µ

2
− 6µ2 + 2µ2

(

−5 + 3 µ2
)

ln µ

}

,(23a)

κ(loop)
n =

M2

πe2

∞
∫

ωth

dω

ω
∆σ(n)

1n =
−2g2

(4π)2

{

2 −
µ (2 − µ2)
√

1 − 1
4µ

2
arccos

µ

2
− 2µ2 ln µ

}

. (23b)

Exactly the same result is found in the case of pseudoscalar pion-nucleon coupling and
indeed Eq. (23) agrees with the long-known one-loop calculation done by using standard
techniques [9]. It is also worth noting that the result given in Eq. (23) is not entirely in
agreement with the chiral perturbation theory calculation of Ref. [10]. The discrepancy is
apparently due to the fact that the ”infrared regularized” loop amplitudes exploited in [10]
do not satisfy the usual dispersion relations. Their analytic structure in the energy plane is
somewhat more complicated since there are additional cuts due to explicit dependence on√

s, cf. [11].
Finally, we would like to make an observation concerning the chiral behavior of the one-

loop result for the nucleon a.m.m.. Expanding Eq. (23) around the chiral limit (mπ = 0),
which incidentally corresponds here with the heavy-baryon expansion, we have

κ(loop)
p =

g2

(4π)2

{

1 − 2πµ − 2 (2 + 5 ln µ) µ2 +
21π

4
µ3 + O(µ4)

}

, (24)

κ(loop)
n =

g2

(4π)2

{

−4 + 2πµ − 2 (1 − 2 lnµ) µ2 −
3π

4
µ3 + O(µ4)

}

. (25)

The term linear in pion mass (recall that µ = mπ/M) is the well-known leading nonanalytic
(LNA) correction. On the other hand, expanding the same expressions around the large mπ

limit we find

κ(loop)
p =

g2

(4π)2
(5 − 4 lnµ)

1

µ2
+ O(µ−4), (26)

κ(loop)
n =

g2

(4π)2
2(3 − 4 ln µ)

1

µ2
+ O(µ−4). (27)

What is intriguing here is that the one-loop correction to the nucleon a.m.m. for heavy
quarks behaves as 1/mquark (where mquark ∼ m2

π), precisely as expected from a constituent
quark-model picture. Here this is a result of subtle cancellations in Eq. (23) taking place for
large values of mπ. In contrast, the infrared regularization procedure [10] gives the result
which exhibits pathological behavior with increasing pion mass and diverges for mπ = 2M .

Since the expressions in Eq. (23) have the correct large mπ behavior they should be bet-
ter suited for the chiral extrapolations of the lattice results than the usual heavy-baryon
expansions or the “infrared-regularized” relativistic theory. This point is clearly demon-
strated by Fig. 5, where we plot the mπ-dependence of the full [Eq. (23)], heavy-baryon, and
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infrared-regularization [10] leading order result for the magnetic moment of the proton and
the neutron, in comparison to recent lattice data [12]. In presenting these results we have
added a constant shift (counter-term κ0) to the magnetic moment, i.e.,

µp = (1 + κ0p + κ(loop)
p )(e/2M), (28)

µn = (κ0n + κ(loop)
n )(e/2M) (29)

and fitted it to the known experimental value of the magnetic moment at the physical pion
mass, µp ! 2.793 and µn ! −1.913, shown by the open diamonds in the figure. For the
value of the πNN coupling constant we have used g2/4π = 13.5. The mπ-dependence away
off the physical point is then a prediction of the theory. The figure clearly shows that the
SR results, shown by the dotted lines, is in a better agreement with the behavior obtained
in lattice gauge simulations.

It is therefore convenient to use the SR results for the parametrization of lattice data.
For example, we consider the following two-parameter form:

µp =

(

1 +
κ̃0p

1 + apm2
π

+ κ(loop)
p

)

e

2M
, (30a)

µn =

(

κ̃0n

1 + anm2
π

+ κ(loop)
n

)

e

2M
, (30b)

where κ̃0p and κ̃0n are fixed to reproduce the experimental magnetic moments at the physical
mπ. The parameter a can be fitted to lattice data. The solid curves in Fig. 5 represent the
result of such a single parameter fit to the lattice data of Ref. [12] for the proton and neutron
respectively, where ap = 1.6/M2 and an = 1.05/M2, M is the physical nucleon mass.

In conclusion, we have presented a new sum rule which in essence can be viewed as the
first derivative of the well-known GDH sum rule w.r.t. the anomalous magnetic moment.
The attractive feature of this new sum rule is that it established a linear relation between the
a.m.m. and the cross section (in contrast to the GDH SR where the relation is quadratic),
allowing an evaluation of loop corrections to the a.m.m. by computing a total cross section
of a corresponding photoabsorption process to one loop lower than the desired result and
then integrating it over energy. As an example, we reproduced in this way the celebrated
Schwinger correction to the electron a.m.m., as well as considered the one pion-nucleon loop
correction to the nucleon magnetic moment.

Of course, the results presented herein are not the end of such applications. Indeed, one
can envision extension both to higher order calculations by use of one loop inputs and/or
application to other sum rules, such as those for polarizabilities. However, we leave these as
challenges for future work.
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Compton scattering to NNLO [V.Lensky & VP, JETP Lett. (2009),
                 arXiv:0907.0451]
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Compton scattering cross sections
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Data points:
MAMI/TAPS (2001)
SAL (1993)
Illinois (1991)

Curves:

Klein-Nishina

Born + WZW

+ p-qube

+ Delta
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Scalar Polarizabilities 
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∆ = M∆ −MN ≈ 300MeV

S waveThursday, July 9, 2009



Scalar Polarizabilities 
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BChPT O(     ) [Bernard, Kaiser & Meissner PRL (1991)]

BChPT - “predictive powers” [Lensky & VP,  (2009)]

HBChPT          - Deltaless [Beane et al (2005)]

p3

∆ = M∆ −MN ≈ 300MeV
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pion photoproduction, Compton scattering. A useful 
connection between experimental and lattice results.

HBChPT vs. BChPT:
   Relativistic Quantum Field Theory works!
   (both from viewpoint of consistency and practice) 

BChPT (w/ Delta’s) at NNLO for Compton scattering has a 
uncertainty comparable to experiment and is consistent 
with experimental cross-sections upto the threshold, but 
not with the PDG value for magnetic polarizability.
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