Electromagnetic corrections in $\eta \rightarrow 3\pi$ decays

C. Ditsche¹ B. Kubis¹ U.-G. Meißner^{1,2}

¹Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn ²Institut für Kernphysik (Theorie) and Jülich Center for Hadron Physics, Forschungszentrum Jülich

6th International Workshop on Chiral Dynamics 2009, University of Bern

[Eur. Phys. J. C 60 (2009) 83]

C. Ditsche (HISKP & BCTP, Universität Bonn)

• $\eta \rightarrow 3\pi$ forbidden by isospin symmetry, two sources of breaking:

$$\mathcal{H}_{QCD}(x) = \frac{m_d - m_u}{2} (\bar{d}d - \bar{u}u)(x)$$
$$\mathcal{H}_{QED}(x) = -\frac{e^2}{2} \int dy \ D^{\mu\nu}(x - y) T(j_\mu(x)j_\nu(y))$$

• electromagnetic effects are small: approx. $A_{\eta \to 3\pi} \sim (m_d - m_u)$ [Sutherland 1966] \Rightarrow clean access to quark mass ratios

- systematic machinery must cope with both effects accurately
 - \Rightarrow chiral perturbation theory with virtual photons
- many testable predictions: Dalitz plot parameters, branching ratio $\frac{\Gamma(\eta \to 3\pi^0)}{\Gamma(n \to \pi^0\pi^+\pi^-)}$
- new high statistics experiments: [WASA@COSY, CB@MAMI-B/-C, KLOE/KLOE-2@DAΦNE]
 - \Rightarrow reconsider electromagnetic corrections to achieve higher precision

$\Gamma(\eta \rightarrow 3\pi)$: calculations vs. experiments

- NLO strong effects $\mathcal{O}((m_d m_u)p^2)$ a factor two off from exp. [Gasser/Leutwyler (GL) 1985]
 - \Rightarrow large unitary corrections (FSI: $\pi\pi$ rescattering)
- strong unitary corrections beyond \$\mathcal{O}(p^4)\$ obtained via dispersive techniques [Anisovich/Leutwyler & Kambor et.al. 1996] and UChPT [Borasoy/Nißler 2005]
- NNLO strong effects $O((m_d m_u)p^4)$ enhance NLO result [Bijnens/Ghorbani 2007]
- LO em contributions $O(e^2)$ vanish [Sutherland 1966]
- NLO em effects $O(e^2p^2)$ found to be small [Bauer/Kambor/Wyler (BKW) 1996]

- BKW neglected $\mathcal{O}(e^2(m_d m_u))$ as it is of 2nd order in isospin breaking, but:
 - \Rightarrow neither photon loops nor pion mass difference [\hookrightarrow approx. $M_{\pi^{\pm}}^2 M_{\pi^0}^2 \sim e^2$]
 - ⇒ hence no non-trivial analytic structures in amplitudes
- expected features at considered order:
 - Coulomb pole at threshold $s = 4M_{\pi\pm}^2$ in charged amplitude
 - cusps at $s, t, u = 4M_{\pi^{\pm}}^2$ in neutral amplitude due to $\eta \to \pi^0 \pi^+ \pi^- \to \pi^0 \pi^0 \pi^0$
- DKM corrections should be roughly $\frac{m_d m_u}{m_d + m_u} \approx 1/3$ compared with BKW corrections

$$\eta \rightarrow 3\pi$$
 up to NLO at $\mathcal{O}(e^2(m_d - m_u))$

strong and electromagnetic diagrams:

• LECs: some strong *L_i* (known), some em *K_i* (dimensional analysis)

- $\Delta I = 1$ relation not valid at 2nd order in isospin breaking: $\mathcal{A}_n(s, t, u) \neq \mathcal{A}_c(s, t, u) + \mathcal{A}_c(t, u, s) + \mathcal{A}_c(u, s, t) \quad [\hookrightarrow e.g. \text{ photon loops}]$
- all results relative to GL amplitude $\mathcal{O}((m_d m_u)p^2)$ [GL, Nucl. Phys. B 250 (1985) 539]
- no imaginary effects from BKW amplitude $\mathcal{O}(e^2p^2)$ [BKW, Nucl. Phys. B 460 (1996) 127]
- error estimates from variation of em LECs K_i [
 → not from higher orders in ChPT]
- IR & kinematical divergences: soft-photon bremsstrahlung
 - ⇒ subtraction of universal soft-photon corrections

real and imaginary part of NLO charged decay amplitude along t = u line:

- uncertainties hardly visible since ${\cal A}^{LO}_{\eta
 ightarrow \pi^0 \pi^+ \pi^-} \sim -s$ [\hookrightarrow line widths]
- illustration of divergences: IR cured by hand, Coulomb pole & phase retained

$\eta ightarrow 3\pi^0$ Decay Amplitude

real and imaginary part of NLO neutral decay amplitude along t = u line:

• notice small scale due to $\mathcal{A}^{LO}_{\eta \to 3\pi^0} \sim ext{const.}$ [\hookrightarrow visible error bands]

- cusp at $\pi^+\pi^-$ threshold clearly visible
- sizes of DKM and BKW corrections comparable

Dalitz Plot Parameters for $\eta \to \pi^0 \pi^+ \pi^-$

$$|\mathcal{A}_{c}(x,y)|^{2} = |\mathcal{N}_{c}|^{2} \{1 + ay + by^{2} + dx^{2} + fy^{3} + gx^{2}y + ...\}$$
$$x = \frac{\sqrt{3}(u-t)}{2M_{\eta}Q_{c}} \qquad y = \frac{3\left[(M_{\eta} - M_{\pi^{0}})^{2} - s\right]}{2M_{\eta}Q_{c}} - 1$$

	$ \mathcal{N}_c ^2$	а	b	d
GL	0.0325	-1.279	0.396	0.0744
ΔBKW	$(-1.1\pm0.9)\%$	$(+0.6\pm0.1)\%$	(+1.4±0.2)%	(+1.5±0.5)%
ΔDKM	(-2.4±0.7*)%	(+0.7±0.4)%	(+1.5±0.7)%	(+4.4±0.4*)%

- all corrections at percent level: normalization reduced, slopes increased
- DKM: universal soft-photon corrections subtracted

Cusps in $\eta \to 3\pi^0$ Dalitz Plot

• cusps at $\pi^+\pi^-$ threshold in *s*, *t* and *u* clearly visible

$$|\mathcal{A}_n(x,y)|^2 = |\mathcal{N}_n|^2 \{1 + 2\alpha z + \dots\}$$
$$z = x^2 + y^2$$

	$ \mathcal{N}_n ^2$	$10^2 \times \alpha$	χ^2/ndf
GL	0.269	1.27	$\equiv 1$
ΔBKW	(-1.1±0.9)%	(+3.7±0.5)%	0.99
ΔDKM	(-3.3±1.8)%	(-0.2±1.0)%	6.20
ΔDKM <mark>(cusp)</mark>	$(-3.3\pm1.8)\%$	(+5.0±1.1)%	0.35

• simple polynomial fit in z can not account for cusp structures [\hookrightarrow c.f. $\chi^2/$ ndf]

 $\Rightarrow \alpha$ gets reduced by roughly 4% [\hookrightarrow but effect too small to explain sign-discrepancy]

• DKM(cusp): fit of inner region $z \le z_{cusp}$ excluding cusps

Summary & Outlook

- electromagnetic corrections in general small (but need to be accounted for), DKM effects at $O(e^2(m_d - m_u))$ as large as BKW effects at $O(e^2\hat{m})$
- observe non-trivial analytic structure with Coulomb pole and cusps
- calculated new corrections for many observables:

Dalitz plot parameters, decay widths, branching ratio, quark mass ratios

- timely for new high statistics experiments: [WASA@COSY, Phys. Lett. B 677 (2009) 24] Kupść [CB@MAMI-B, Eur. Phys. J. A 39 (2009) 169] [CB@MAMI-C, Phys. Rev. C 79 (2009) 035204] Prakhov [KLOE/KLOE-2@DAΦNE] Jacewicz
- theoretical framework perfectly suited for extraction of $\pi\pi$ scattering lenghts is

non-relativistic effective field theory:

[Bissegger et al., Phys. Lett. B 659 (2008) 576]
 [Bissegger et al., Nucl. Phys. B 806 (2009) 178]
 [Gullström/Kupść/Rusetsky, Phys. Rev. C 79 (2009) 028201]

• new dispersive analysis of $\eta \rightarrow 3\pi^0$: Lanz

[Weinberg 1979, Gasser/Leutwyler 1984/1985, Urech 1995, ...]

$$\mathcal{L}_{\text{eff}} = \sum_{n=1}^{\infty} \mathcal{L}^{(2n)} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \dots$$
$$\mathcal{L}^{(2)} = \frac{F_0^2}{4} \langle D^{\mu} U^{\dagger} D_{\mu} U + \chi^{\dagger} U + U^{\dagger} \chi \rangle + C \langle \mathcal{Q} U \mathcal{Q} U^{\dagger} \rangle - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$
$$\bullet U = \exp\left(\frac{i\phi}{F_0}\right) \qquad \chi \sim 2B_0 \operatorname{diag}(m_u, m_d, m_s) \qquad \mathcal{Q} = \frac{e}{3} \operatorname{diag}(2, -1, -1)$$
$$D_{\mu} \sim \partial_{\mu} - e \mathcal{Q} A_{\mu} \qquad F_0 \sim F_{\pi} \qquad B_0 \sim |\langle 0|\bar{q}q|0\rangle|/F_0^2$$

- C fixed from pion mass difference $\Delta M_{\pi}^2 = (M_{\pi\pm}^2 M_{\pi^0}^2)^{\text{LO}} = (2e^2C)/F_0^2$
- for $m_u = m_d \Rightarrow \Delta M_K^2 = \Delta M_\pi^2$ [Dashen 1969]
- for $m_u \neq m_d \Rightarrow (\Delta M_K^2)_{\rm str} = -(m_d m_u)B_0$
- $\eta \pi^0$ mixing described at LO by angle $\epsilon = \frac{1}{2} \arctan\left(\frac{\sqrt{3}}{2} \frac{m_d m_u}{m_s \hat{m}}\right)$ $\hat{m} = \frac{m_d + m_u}{2}$, $\eta \eta'$ mixing encoded in strong NLO LEC L_7

$\eta ightarrow 3\pi$ Decay Amplitudes at LO

$$\mathcal{A}_{\eta \to \pi^{0} \pi^{+} \pi^{-}}^{LO} = -\frac{B_{0}(m_{d} - m_{u})}{3\sqrt{3}F_{\pi}^{2}} \left\{ 1 + \frac{3(s - s_{0}^{c}) + 2\Delta M_{\pi}^{2}}{M_{\eta}^{2} - M_{\pi^{0}}^{2}} \right\} \qquad \eta \xrightarrow{p_{\pi^{0}}} p_{\pi^{0}} \pi^{+}$$

$$s = (p_{\eta} - p_{\pi^{0}})^{2}, \quad t = (p_{\eta} - p_{\pi^{+}})^{2}, \quad u = (p_{\eta} - p_{\pi^{-}})^{2}$$

$$\mathcal{A}_{\eta \to 3\pi^{0}}^{LO} = -\frac{B_{0}(m_{d} - m_{u})}{3\sqrt{3}F_{\pi}^{2}}$$

$$s = (p_{\eta} - p_{\pi^{0}})^{2}, \quad t = (p_{\eta} - p_{\pi^{0}})^{2}, \quad u = (p_{\eta} - p_{\pi^{0}})^{2}$$

$$3s_{0}^{n[c]} = s + t + u = M_{\eta}^{2} + 3M_{\pi^{0}}^{2} [+2\Delta M_{\pi}^{2}]$$

$$\Rightarrow \quad \Gamma(\eta \to 3\pi)^{LO} \sim Q^{-4}, \quad Q^{2} = \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}}$$

• notice:
$${\cal A}^{LO}_{\eta o\pi^0\pi^+\pi^-}\sim -s$$
 , ${\cal A}^{LO}_{\eta o3\pi^0}\sim {
m const.}$

 π^0

Kinematical Bounds of Dalitz Plots

•
$$\eta \rightarrow \pi^0 \pi^+ \pi^-$$

• $\eta \rightarrow 3\pi^0$
• $\eta \rightarrow 3\pi$ with
 $\overline{M_{\pi}^2} = \frac{(M_{\pi^0}^2 + 2M_{\pi^\pm}^2)}{3}$
• $4M_{\pi^\pm}^2$ cusp lines
and $t = u$ lines

 \Rightarrow sizeable deviations at edges of Dalitz plots $\eta
ightarrow \pi^0 \pi^+ \pi^-$ Dalitz Slopes and Normalization

$$|\mathcal{A}_{c}(x,y)|^{2} = |\mathcal{N}_{c}|^{2} \{1 + ay + by^{2} + dx^{2} + fy^{3} + gx^{2}y + \dots \}$$

	$ \mathcal{N}_c ^2$	а	b	
GL	0.0325	-1.279	0.396	
ΔBKW	-0.0004 ± 0.0003	-0.008 ± 0.001	$+0.006 \pm 0.001$	
	$= (-1.1 \pm 0.9)\%$	$= (+0.6 \pm 0.1)\%$	$= (+1.4 \pm 0.2)\%$	
ΔDKM	$-0.0008 \pm 0.0002^*$	-0.009 ± 0.005	$+0.006\pm0.003$	
	$= (-2.4 \pm 0.7^*)\%$	$= (+0.7 \pm 0.4)\%$	$= (+1.5 \pm 0.7)\%$	
	d	f	g	χ^2/ndf
GL	0.0744	0.0126	-0.0586	$\equiv 1$
ΔBKW	$+0.0011\pm\!0.0004$	-0.0003 ± 0.0001	-0.0010 ± 0.0003	1.03
	$=(+1.5\pm0.5)\%$	$= (-2.2 \pm 0.4)\%$	$= (+1.7 \pm 0.6)\%$	
ΔDKM	$+0.0033\pm\!0.0003^*$	$+0.0001\pm 0.0001$	$-0.0038 \!\pm\! 0.0009^*$	1.63
	$=(+4.4\pm0.4^*)\%$	$= (+0.5 \pm 0.6)\%$	$=(+6.4\pm1.5^{*})\%$	

$\eta ightarrow 3\pi^0$ Dalitz Slope and Normalization

$$|\mathcal{A}_n(x,y)|^2 = |\mathcal{N}_n|^2 \{1 + 2\alpha z + ...\}$$

	$ \mathcal{N}_n ^2$	$10^2 \times \alpha$	χ^2/ndf
GL	0.269	1.27	$\equiv 1$
ΔBKW	-0.003 ± 0.002	$+0.05 \pm 0.01$	0.99
	$= (-1.1 \pm 0.9)\%$	$= (+3.7 \pm 0.5)\%$	
ΔDKM	-0.009 ± 0.005	-0.002 ± 0.01	6.20
	$=(-3.3\pm1.8)\%$	$= (-0.2 \pm 1.0)\%$	
ΔDKM <mark>(cusp)</mark>	$-0.009 \!\pm\! 0.005$	$+0.06 \pm 0.01$	0.35
	$=(-3.3\pm1.8)\%$	$= (+5.0 \pm 1.1)\%$	

	$\eta \to \pi^0 \pi^+ \pi^-$	$\eta ightarrow 3\pi^0$
Γ^{GL}	154.5 eV	222.8 eV
$\Delta \Gamma^{BKW}$	(-1.0±0.9)%	$(-1.1 \pm 0.9)\%$
$\Delta \Gamma^{DKM}$	$(-1.9\pm0.5^*)\%$	$(-3.3 \pm 1.8)\%$
	$(-1.0\pm0.5^*)\%$	
ſ		
	r ^{GL} 1.4	42
	Δr^{BKW} (-0.1 ±	= 1.2)%
	Δr^{DKM} (-1.4 \pm	<u>= 1.8</u>)%
	$\Delta r^{\text{DKM(uc)}}$ (-2.3 ±	= 1.8)%
	$\eta ightarrow \pi^0 \pi^+ \pi^-$	$\eta ightarrow 3\pi^0$
ΔQ^{BKW}	$(+0.24 \pm 0.22)\%$	$(+0.28 \pm 0.22)\%$
ΔQ^{DKM}	$(+0.48 \pm 0.12^*)\%$	$(+0.84 \pm 0.46)\%$
$\Delta Q^{DKM(uc)}$	$(+0.24 \pm 0.12^*)\%$	

 DKM(uc): no subtraction of universal soft-photon corrections

• branching ratio: $r = \frac{\Gamma(\eta \rightarrow 3\pi^0)}{\Gamma(\eta \rightarrow \pi^0 \pi^+ \pi^-)}$

• use approx. $\Gamma \sim Q^{-4}$

 $[\hookrightarrow$ does not hold for BKW terms $\mathcal{O}(e^2\hat{m})]$

 $[\hookrightarrow \text{ input value } Q^{\text{GL}} = Q^{\text{Dashen}} = 24.2]$

 \Rightarrow apply opposite shift to purify extraction of *Q* from experiment