η / η^{\prime} decays with KLOE

Marek Jacewicz, LNF-INFN Frascati
on behalf of the KLOE Collaboration

DAFNE collider in Frascati

$\mathrm{e}^{+} \mathrm{e}^{-}$collider @ $\mathrm{Vs}^{\prime}=\mathrm{m}_{\mathrm{\rho}}=1.019 \mathrm{GeV}$ in KLOE runs $\sim 2.5 \mathrm{fb}^{-1}$ collected This translates to $\sim 8 \times 10^{9} \phi$ mesons Also collected $240 \mathrm{pb}^{-1} @ 1 \mathrm{GeV}$ "off-peak"

KLOE experiment

Detector design optimized for K_{L} measurement:

big volume with good ability for kaon decay vertex reconstruction high track reconstruction efficiency very good momentum resolution very good time resolution

Drift Chamber

 58 layers, 52140 wires 90% He $10 \% \mathrm{C}_{4} \mathrm{H}_{10}$ $\sigma_{\mathrm{r} \phi}=150 \mu \mathrm{~m}$$\sigma_{z}=2 \mathrm{~mm}$
$\sigma_{p} / p \sim 4 \times 10^{-3}$

Electromagnetic Calorimeter Barrel + End caps
Lead-scintillating fibers 98\% solid angle coverage
$\sigma_{\mathrm{t}}=57 \mathrm{ps} / \sqrt{ }(\mathrm{E}[\mathrm{GeV}]) \oplus 100 \mathrm{ps}$
$\sigma_{\mathrm{E}} / \mathrm{E}=0.057 / \sqrt{ }(\mathrm{E}[\mathrm{GeV}])$

$\eta-\eta^{\prime}$ mixing and η^{\prime} gluonic content

KLOE old result

η ' considered a good candidate to host gluonium content
In the constituent quark model one can extract gluonium content together with the $\eta-\eta$ ' mixing angle

Rosner PRD 27 (1983) 1101
$\phi_{P}=\eta-\eta$ ' mixing angle
$\left|\eta^{\prime}\right\rangle=X_{\eta^{\prime}}|q \bar{q}\rangle+Y_{\eta^{\prime}}|s \bar{s}\rangle+Z_{G}|G\rangle$
$X_{\eta^{\prime}}=\sin \phi_{P} \cos \phi_{G}$
$|\eta\rangle=\cos \phi_{p}|q \bar{q}\rangle-\sin \phi_{p}|s \bar{s}\rangle$
$Z_{G}=\sin \phi_{G}$ gluonium content

$$
R_{\phi}=\frac{\operatorname{BR}\left(\phi \rightarrow \eta^{\prime} \gamma\right)}{\operatorname{BR}(\phi \rightarrow \eta \gamma)}=\frac{\text { KLOE PLB 648 (2007) 267 }}{\left(4.77 \pm 0.09_{\text {stat. }} \pm 0.19_{\text {syst. }}\right) \times 10^{-3}}
$$

$$
\phi_{\mathrm{P}}=(39.7 \pm 0.7)^{\circ}
$$

$$
\left(Z_{G}\right)^{2}=0.14 \pm 0.04
$$

$$
\mathrm{P}\left(\chi^{2}\right)=0.49
$$

Gluonium at 3σ
Imposing $\mathrm{Z}_{\mathrm{G}}=0 \rightarrow \mathrm{P}\left(\chi^{2}\right)=0.01$

Escribano-Nadal JHEP 0705:006, 2007

$$
\left(Z_{G}\right)^{2}=0.04 \pm 0.09
$$

Difference attributed to the use in the fit of theoretical parameters $\mathbf{Z}_{\mathrm{s}}, \mathbf{Z}_{\mathrm{q}}, \boldsymbol{\phi}_{\mathrm{v}}, \mathbf{m}_{\mathrm{s}} / \mathbf{m}$ from Bramon et al. PLB 503 (2001) 271 where $Z_{G}=0$ is assumed

KLOE new fit

5 more relations added

- $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$
- $\Gamma\left(\eta^{\prime} \rightarrow \rho \gamma\right) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$
- $\Gamma\left(\eta^{\prime} \rightarrow \omega \gamma\right) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$
- $\Gamma(\omega \rightarrow \eta \gamma) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$
- $\Gamma(\rho \rightarrow \eta \gamma) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$
- $\Gamma(\phi \rightarrow \eta \gamma) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$
- $\Gamma\left(\phi \rightarrow \pi^{0} \gamma\right) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$
- $\Gamma\left(\mathrm{K}^{*+} \rightarrow \mathrm{K}^{+} \gamma\right) / \Gamma\left(\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{0} \gamma\right)$

Parameters

$Z_{s}, Z_{q}, \phi_{v}, m_{s} / m$ are left free

The new result includes the recent KLOE BR measurement
$B R\left(\omega \rightarrow \pi^{0} \gamma\right)=(8.09 \pm 0.14) \% \quad[P L B 669$ (2008) 223]
and the lattice results for decay constants ratios assuming exact isospin symmetry.
In addition the fit has been updated with all recent measurements from PDG'08

KLOE new fit

$$
\begin{array}{l|l|l|l|l}
\chi^{2} / \text { dof }=14.7 / 4 & \left(Z_{G}\right)^{2} & \text { fixed 0 } & 0.115 \pm 0.036 & \chi^{2} / \text { dof }=4.6 / 3 \\
P\left(\chi^{2}\right)=0.005 & \phi_{\mathrm{P}} & (41.4 \pm 0.5)^{\circ} & (40.4 \pm 0.6)^{\circ} & \mathrm{P}\left(\chi^{2}\right)=0.20
\end{array}
$$

KLOE new fit results

$68 \% \mathrm{CL}$ contour of the η^{\prime} related measurements in the $Z^{2}{ }_{G}-\phi_{P}$ plane

$$
\boldsymbol{\eta} \longrightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{e}^{+} \boldsymbol{e}^{-}
$$

Motivations

Existing data: 4 events CMD-2, 16 events CELSIUS-WASA
η structure studying virtual photon via M_{ee}
Test of CP violation by measurement of angular asymmetry between e+e- and $\pi+\pi-$ planes
Gao, Mod. Phys. Lett. A17(2002) 1583

$$
A_{\phi}=\frac{N_{\sin (\phi) \cos (\phi)>0}-N_{\sin (\phi) \cos (\phi)<0}}{N_{\sin (\phi) \cos (\phi)>0}+N_{\sin (\phi) \cos (\phi)<0}}
$$

Within SM constrained by $\operatorname{BR}(\eta \rightarrow \pi \pi)$: using experimental upper limit: $\quad A_{\phi}<10^{-4}$ using theoretical prediction: $\quad A_{\phi} \sim 10^{-15}$

The unconventional CPV term can increase A_{ϕ} up to 10^{-2}

Analysis scheme

Data sample: $1.7 \mathrm{fb}^{-1}$
PID using TOF from EM calorimeter
Fit to $M_{\text {тлее }}$ sidebands for background scale factors
Photon conversion on Beam Pipe rejected
Counting on $\mathrm{M}_{\text {тлее }}$ in the signal region: $\mathrm{N}_{\text {тлее }}=1555 \pm 52$
Analysis efficiency $\sim 8 \%$
368 bkg events

Results: BR and Asymmetry

$$
\operatorname{BR}\left(\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}\right)=\left(26.8 \pm 0.9_{\text {Stat. }} \pm 0.7_{\text {Syst. }}\right) \cdot 10^{-5}
$$

PLB 675(2009) 283

$$
A_{\phi}=\left(-0.6 \pm 2.5_{\text {stat. }} \pm 1.8_{\text {syst. }}\right) \cdot 10^{-2}
$$

First measurement!

$$
\boldsymbol{\eta} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-} \boldsymbol{e}^{+} \boldsymbol{e}^{-}
$$

$$
\eta \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \mathbf{e}^{+} \mathbf{e}^{-} \text {analysis }
$$

- Data sample: $1.7 \mathrm{fb}^{-1}$
- e+e- pairs from photon conversion on Beam Pipe and Drift Chamber wall rejected
- Remaining background from ϕ decay is subtracted

Experiment - MC comparison

$$
\eta \rightarrow \pi^{+} \boldsymbol{\pi}^{-} \gamma \quad \text { and } \quad \eta \longrightarrow \pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0}
$$

Motivations

The Box Anomaly

In the $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ decay a significant contribution from the chiral anomaly responsible for $\eta \rightarrow \gamma \gamma$ decay is expected

Studies of the two pion system allow for tests of ChPT and its unitarized extensions, e.g. VMD or the chiral unitary approach.

Holstein, Phys. Scripta, T99 55 (2002)
Benayoun, Eur. Phys. J., C31 525 (2003)
Borasoy, Nissler, Nucl. Phys., A740 362 (2004)

Gormley, Phys.Rev. D2 501 (1970)
Layter, Phys.Rev. D7 2565 (1973)

$$
\text { Layter, Phys.Rev. D7 } 2565 \text { (1973) }
$$

Low in statistic and not acceptance corrected Not sufficient for unambiguous theoretical interpretation

Existing data

Latest results from CLEO on the ratio of charged decays BRs differ > 3σ from old results

$\Gamma\left(\pi^{+} \pi^{-} \gamma\right) / \Gamma\left(\pi^{+} \pi^{-} \pi^{0}\right)$				
VALUE	EVTS	DOCUMENT ID		TECN
$\overline{\mathbf{0 . 2 0 2}} \mathbf{\pm 0 . 0 0 7}$ OUR FIT Error includes scale factor of 2.4.				
$\mathbf{0 . 2 0 3} \pm 0.008$ OUR AVERAGE		Error includes scal	fact	of 2.4
$0.175 \pm 0.007 \pm 0.006$	859	LOPEZ	07	CLEO
0.209 ± 0.004	18k	THALER	73	ASPK
0.201 ± 0.006	7250	GORMLEY	70	ASPK

Selection: $\underline{\eta} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta \rightarrow \pi^{+} \pi^{-} \gamma$

No kinematical fit, signal selection with help of kinematical constraints from consecutive decays i.e.
$\phi \rightarrow \eta \gamma, \quad \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}, \quad \pi^{0} \rightarrow \gamma \gamma$
$\phi \rightarrow \eta \gamma, \quad \eta \rightarrow \pi^{+} \pi^{-} \gamma$

For $\eta \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0}$:

- Missing mass to ($\left.\phi-\pi^{+}-\pi^{-}-\gamma_{\phi}\right)$ system
- Opening angle $\left(\gamma_{\eta}{ }^{1} \gamma_{\eta}{ }^{2}\right)$ in the π^{0} rest frame

Eff = 40 \% with BKG/SIG = 0.5 \%

Selection: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta \rightarrow \pi^{+} \pi^{-} \gamma$

For $\eta \rightarrow \pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{\gamma}$:

- Similar cuts ($\left(\mathrm{E}_{\gamma}-\mathrm{P}_{\gamma}\right)$ instead of missing mass, angle selection)

Eff = 29 \%, BKG/SIG = 10:1
surviving background $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$
different topology in $\gamma \nsim$ distributions
simultaneous fit to both spectra

PRELIMINARY RESULTS: $\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \boldsymbol{\gamma}\right) / \Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$
 (based on $1.2 \mathrm{fb}^{-1}$ data set)

$$
\frac{\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)}{\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)}=0.2014 \pm 0.0004_{\text {stat }}
$$

OUTLOOK

- Our preliminary results agrees with PDG values, confirming old results from '70s.
- We are evaluating systematics, aiming at value < 1\%
- Cuts on M_{γ} and $\cos \left(\gamma_{\phi} \gamma_{\eta}\right)$ in the π^{0} rest frame will allow for significant background reduction
- Plan to use full KLOE data set (statistical precision $\sim 0.15 \%$) and investigate in detail the $\pi^{+} \pi^{-}$invariant mass distribution and photon energy spectrum in order to disentangle non-resonant contributions and settle the inconsistencies of previous measurements.

SUMMARY

- Gluonium content confirmed at 3σ level in η^{\prime} using the Rosner model (paper submitted to JHEP (ArXiv 0906.3819))
- BR and the first measurement of asymmetry in $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$ decay:

$$
\begin{aligned}
& \mathrm{BR}=\left(26.8 \pm 0.9_{\text {Stat. }} \pm 0.7_{\text {Syst. }}\right) \cdot 10^{-5} \\
& \mathrm{~A}_{\phi}=\left(-0.6 \pm 2.5_{\text {Stat. }} \pm 1.8_{\text {Syst. }}\right) \cdot 10^{-2}
\end{aligned}
$$

- First observation of the $\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{+} \mathrm{e}^{-}$decay ~ 400 events
- New analysis has been started on $\eta \rightarrow \pi^{+} \pi^{-} \gamma$. Preliminary results on the ratio of BRs: $\frac{\Gamma(\eta \rightarrow \pi+\pi-\gamma)}{\Gamma(\eta \rightarrow \pi+\pi-\pi 0)}=0.2014 \pm 0.0004($ stat $)$
- Other analysis in progress:

$$
\eta \rightarrow \pi^{0} \gamma, \quad \eta \rightarrow \mu^{+} \mu^{-}, \quad \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta, \quad \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma .
$$

DAФNE and KLOE upgrades

New machine magnetic scheme: crab waist

New interaction region: larger crossing angle

$L_{\text {peak }}=5 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$\int \mathrm{L}=15 \mathrm{pb}^{-1} /$ day

STEP-0 [2009]: 5fb-1

γ tagger
STEP-1 [2011]: >20fb-1
Low Angle Calorimeter Quadrupole Calorimeter Inner Tracker

KLOE-2 perspectives on eta/eta' physics examples:

Refinement of rare η decay measurements
Improve result on $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$BR and CPV asymmetry
Form factor studies
Decays $\eta \rightarrow$ ee $\gamma, \eta \rightarrow \mu \mu \gamma, \eta \rightarrow$ eeee
Comparison between $\eta \rightarrow \pi \pi e e, \eta \rightarrow$ eeee, $\eta \rightarrow \mu \mu e e$ channels
Test of theoretical calculation
High statistics study of the process $\eta \rightarrow \pi^{0} \gamma \gamma$ would allow to strongly test ChPT O(p ${ }^{6}$) calculations

Open a window on η ' physics
Measurement of the all main η ' BR's together with η ' decay width $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma^{*} \gamma^{*} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime}\right)$ at 1% precision would be necessary to solve the gluonium puzzle

SPARES

KLOE old result

$$
R_{\phi}=\frac{\operatorname{BR}\left(\phi \rightarrow \eta^{\prime} \gamma\right)}{\operatorname{BR}(\phi \rightarrow \eta \gamma)}=\left(4.77 \pm 0.09_{\text {stat. }} \pm 0.19_{\text {syst. }}\right) \times 10^{-3} \quad \text { PLB } 648 \text { (2007) } 267
$$

Experimental inputs:

- R_{ϕ}
- $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right) / \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$
- $\Gamma\left(\eta^{\prime} \rightarrow \rho \gamma\right) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$
- $\Gamma\left(\eta^{\prime} \rightarrow \omega \gamma\right) / \Gamma\left(\omega \rightarrow \pi^{0} \gamma\right)$

$$
\begin{aligned}
& \phi_{P}=(39.7 \pm 0.7)^{\circ} \\
& \left(Z_{G}\right)^{2}=0.14 \pm 0.04 \\
& P\left(\chi^{2}\right)=0.49
\end{aligned}
$$

Theoretical parameters

$$
Z_{s}, Z_{q}, \phi_{v}, m_{s} / m
$$

taken from
Bramon et al. PLB 503(2001) 271 where $Z_{G}=0$ is assumed

$$
\left.\left.Z_{q}=\left\langle\eta_{\mathrm{q}}\right| \omega_{\mathrm{q}}>|<\pi| \omega_{\mathrm{q}}\right\rangle=\left\langle\eta_{\mathrm{q}}\right| \rho>|<\pi| \rho\right\rangle
$$

$$
\left.Z_{\mathrm{s}}=\left\langle\eta_{\mathrm{s}} \mid \phi_{\mathrm{s}}\right\rangle|<\pi| \rho\right\rangle
$$

ϕ_{V} is $\phi-\omega$ mixing angle

KLOE Phys. Lett. B648 (2007) 267

$$
\begin{aligned}
& \phi_{P}=(39.7 \pm 0.7)^{\circ} \\
& \left|\phi_{G}\right|=(22 \pm 3)^{\circ} \\
& \sin ^{2} \phi_{G}=\left(Z_{G}\right)^{2}=0.14 \pm 0.04
\end{aligned}
$$

Only ϕ_{P} and Z_{G} are free
Γ 's used in the fit
4 measured quantities including

$$
\eta^{\prime} \rightarrow \gamma / \pi^{0} \rightarrow \gamma
$$

Data from
PDG'06 and KLOE R ${ }_{\phi}$ '07

Escribano-Nadal JHEP 0705:006, 2007

$$
\begin{aligned}
& \phi_{P}=(41.4 \pm 1.3)^{\circ} \\
& \left|\phi_{G}\right|=(12 \pm 13)^{\circ} \\
& \sin ^{2} \phi_{G}=\left(Z_{G}\right)^{2}=0.04 \pm 0.09
\end{aligned}
$$

All theoretical parameters are free
Couplings used in the fit
12 measured quantities without

$$
\eta^{\prime} \rightarrow \gamma / \pi^{0} \rightarrow \gamma
$$

Data from
PDG'06

KLOE-2 detector upgrades

Inner Tracker

5 GEM planes
Min radius: 13 cm
Max radius: 25 cm
$\sigma_{x y} \sim 200 \mu \mathrm{~m} \quad \sigma_{z} \sim 500 \mu \mathrm{~m}$
Material budget: $0.2 \mathbf{X}_{\mathbf{0}}$ Vertex resolution @IP: x3

LYSO Cristal Pointing geometry LOW θ acceptance

QCAL-T

1m cylinder 12 segment
Single tile ReadOut with fiber
Photon impact point resolution increase: x10

Selection: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta \rightarrow \pi^{+} \pi^{-} \gamma$

For $\boldsymbol{\eta} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\gamma}$:

- $\left(\mathrm{E}_{\gamma}-\mathrm{P}_{\gamma}\right)$ of $\boldsymbol{\gamma}_{\eta}{ }^{\text {calc }}$ from $\left(\phi-\pi^{+}-\pi^{-}-\gamma_{\phi}\right)$ system (expecting 0 for signal events)
- Opening angle ($\left.\gamma_{\eta}{ }^{\text {calc }} \gamma_{\eta}{ }^{\text {meas }}\right)$

Eff = 29 \% , BKG/SIG = 10:1
surviving background $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$ most pronounced on $\gamma \gamma$ djstributions simultaneous fit to both spectra

1. EVCL
2. Momenta
3. $\chi^{2}{ }_{\mathrm{KF}} \quad \chi^{2}{ }_{\mathrm{KF}}<4000$

At this level we perform the fit to get the scale factors
A kinematic fit to the ϕ meson is performed for
all the events having \# good tracks ≥ 4

The 22 inputs are:

- 4 tracks x 3 momenta
- x, y, z, E, t of the neutral cluster
- x, y, z of the IP
- $\sqrt{ } \mathrm{s}$ and f momentum

The 5 constraints are:

- Four momentum conservation
- Photon time of flight $\left(c T_{\gamma}=R_{\gamma}\right)$

Physics Motivations

Gormley et al. Phys. Rev. D2 (1970) 501

$$
|M|^{2} \approx k^{2} \sin ^{2} \theta\left(\frac{m_{\pi z}}{q}\right) \frac{\Gamma}{\left(m_{\rho}^{2}-m_{z \pi}^{2}\right)^{2}+m_{\rho}^{2} \Gamma^{2}} ; \Gamma=\left(\left.\frac{q}{q_{0}}\right|^{3} \eta^{3}\right.
$$

Angular distribution expected

$$
\frac{d N}{d(\cos \theta)}=n \sin ^{2} \boldsymbol{\theta}
$$

QCD Anomaly $\quad \eta / \eta^{\prime} \rightarrow \pi{ }^{+} \pi \gamma \quad$ unitary effects via final state interactions:

- WZW in the context of HLS
- Chiral unitarity approach Bethe-Salpeter-equation
- Omnes function

Past Results: $n \rightarrow \pi+\pi-\gamma$

1970-BNL: Gormley et. Al Phys. Rev. D2, 501 (1970)
7250 events spectra agree with simple ρ-dominant model 1973: Layter et. al Phys. Rev. D7, 2565 (1973)
18150 events spectra agree with ρ-dominance of the $\pi{ }^{+} \pi$-final state

