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The EFT with Contact Interactions alone

for a finite range potential the t-matrix can be written as

t(k) ∼ 1

k cot δ − ik

for sufficiently low energies k cot δ can be expanded in powers of k −→
effective range expansion

k cot δ = −1

a
+

r

2
k2 + ... ,

or for a > 0 expand around the two-body bound state pole γ =
√

MB2

k cot δ = −γ +
r

2
(γ2 + k2) + ...
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Consider systems where the scattering length a � `

• such systems have particular universal properties
→ For large positive scattering length we have a bound state at
B2 ≈ 1

Ma2

→ in the nuclear sector this is the deuteron

→ example in the atomic sector is the 4He dimer

• separation of scales

in the nuclear sector:
I 1S0 a ∼ −24 fm−→ r ∼ 3 fm
I 3S1 a ∼ 5 fm−→ r ∼ 2 fm

in the atomic 4He few-body system:
I a ∼ 100 Å−→ r ∼ 10 Å
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In the regime where k`� 1 all interactions look pointlike!

• Use an appropriate EFT (expansion parameters `/a, k`)

• Most general Lagrangian using only contact interactions:

L = ψ†
[
i∂t +

−→
∇2

2M

]
ψ − C0

2
(ψ†ψ)2 − D0

6
(ψ†ψ)3 + . . . ,

• Two-body system (S-waves):

Dim. Reg. −→ tLO ∼
1

−1/a +
√
−E − iε

w/ C0 =
4πa

M

• with correct ordering scheme for diagram topologies (power-counting),
this EFT is an expansion in `/|a| −→ suitable for systems with large a
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The 2-Body Sector

The most successful calculations in the short-range EFT have been
performed in the 2-body sector:

• Form Factors of the Deuteron, Chen et al.

• radiative capture: n + p −→ d + γ, Rupak

• muon capture: µ− + d −→ νµ + n + n, Chen et al.

• Deuteron Electro-Disintegration, Christlmeier & Griesshammer

• and many more ...
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The Three-Body System

� =� +� +� +�
• integral (STM) equation for atom-dimer scattering:

K(k, p; E) = Z(k, p; E) +

Z Λ

0

dq′′ q′′2Z(k, q′′; E)τ(ME − 3

4
q′′2)K(q′′, p; E)

Skorniakov & Ter-Martirosian ’56

• 2-body propagator:

τ(E) =
2

πM2

γ +
√
−ME

E + B2

• single nucleon-exchange + 3-body interaction:

Z(q, q′, E) = − M

2qq′
log(

q2 + qq′ + q′2 −ME

q2 − qq′ + q′2 −ME
) +

MH(Λ)

Λ2
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Without three-body force

−→ strong cutoff dependence

−→ number of bound states
increases with cutoff

−→ relation to Thomas and
Efimov effect
⇒ include three-body
information

10
1

10
2

10
3

Λ [B2
1/2

]

10
1

10
2

10
3

B
3[B

2]

Thus, perform calculations with three-body force:

−→ use binding energy of weakest three-body state to fix H(Λ)
−→ this is renormalization
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After Renormalization

−→ need three-body force for
consistent renormalization
(Bedaque, Hammer, van Kolck,

PRL 82 (1999) 463)

−→ three-body system with
large scattering length
exhibits a limit cycle
Wilson, PRD 3 (1971) 1818

Running of H(Λ)

10
1

10
2

10
3

Λ [1/a]

-2

-1

0

1

2

H
(Λ

)

Remember

• We need one three-body observable to fix H(Λ)
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Consequences of the Limit Cycle
The Three-Body parameter

For large Λ the RG-flow of H(Λ) is described by:

H(Λ) =
sin(s0 ln(Λ/L3)− arctan(1/s0))

sin(s0 ln(Λ/L3) + arctan(1/s0))
, with s0 ≈ 1.0062

Bedaque, Hammer, van Kolck, PRL 82 (1999) 463

• H(Λ) periodic: Λ→ Λenπ/s0 ≈ Λ(22.7)n

• discrete scale invariance with consequences for observables, e.g.

B
(m)
3 /B

(m+1)
3 ≈ 515

−→ this equation holds exactly for all bound states when
`→ 0 and a →∞

(Efimov, SJNP 29 (1979) 546)

• scaling relations in 3-body observables, e.g. a3 − B3, B3 − r3
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EM Observables in the 3-Body System

• Keep the scattering length
fixed

• Vary one of the three-body
observables

→ See what the others are doing

7 8 9
Bt [MeV]

1.5

2

2.5

3

r C
 [f

m
]

Hammer, Meissner, LP 2005

• radiative neutron capture at thermal energies
Sadeghi, Bayegan & Griesshammer 2006
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What about a 4-Body force?

RG Analysis:

• observables are cutoff independent

=⇒ no 4-body force needed

=⇒ no new parameters in the 4-body sector!
Hammer, Meißner & LP 2004

short-range EFT:

• describes α-particle

• explains Tjon line
Hammer, Meißner & LP

2005
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Universal Predictions:

=⇒ 2 Tetramer states for every trimer state
Hammer & LP 2007

• E 0
4 /ET ∼ 5 and E 1

4 /ET ∼ 1.01

−→ confirmed and extended by
Stecher, d’Incao & Greene 2008

−→ 2 universal tetramer states
should be observable in
4-body recombination

• 2 universal tetramer states
found experimentally by
Innsbruck group
Ferlaino et al. 2009

(a) (b)
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Beyond Universality

• In the two-body system finite range corrections are easy!

• In the 3-body system higher order 3-body forces enter

This is relevant:
• For accuracy we need to go beyond leading order! Several

applications:
I Big bang nucleosynthesis, e.g. p + d → 3He+γ
I α-clusters −→ 12C Hoyle state
I Halo nuclei, e.g. 6He

• So: When does the next 3-body force enter?

• How do we include finite range corrections efficiently and correctly?
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Include the Effective Range

Consider the integral equation for particle-dimer scattering:

K(k, p; E) = Z(k, p; E) +

Z Λ

0

dq′′ q′′2Z(k, q′′; E)τ(ME − 3

4
q′′2)K(q′′, p; E)

• Modify the two-body propagator Bedaque et al ’03

τ (n)(E) =
1

E + B2

2

πM2

nX
i=0

“ rs
2

”i

[γ +
√
−ME ]i+1

• At which order does the next three-body force contribute?
→ perturbative analysis gives N2LO for natural Λ

Bedaque et al.2003

→ Renormalization group analysis gives N3LO for large Λ
Phillips & LP 2006

→ full perturbative calculation up to N2LO is on the way
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Some Results for the 3-Nucleon System

Range Corrections in the Three-Nucleon System

a3 [fm] B3 [Mev]

LO 0.65 8.08
NLO 0.65 8.19

NNLO 0.65 8.54

EXP 0.65 8.48

5 6 7 8 9 10 11
B3[MeV]

-1

0

1

2

3

a 3[fm
]

LO
NLO
NNLO
Exp

LP, PRC 74 (2006) 037001

• Note: Convergence pattern looks strange but in fact the NLO
correction is actually smaller than expected
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NLO in the Unitary Limit
Ji, Phillips & Platter 2008

• in the unitary limit the relevant differential equation is

~2

2M

(
− ∂2

∂R2
−

s2
0 + 1

4

R2

)
f0(R) = E f0(R)

which can be solved after renormalizing with a boundary condition or
three-body force

• then
f

(0)
0 (R) =

√
R Kis0(

√
2κR)

→ Now we can do perturbation theory on the higher order and analyze
the linear range correction to the bound state spectrum in the
hyperradial formalism
→in momentum space for nucleons Hammer & Mehen 2001
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• Obtain the perturbing potential by implementing the NLO
Bethe-Peierls condition into the hyperangular equation (Efimov, 1991)

VNLO = − s2
0 ξ0 rs
R3

w/ ξ0 = 0.480

compare to Nielsen, Fedorov, Jensen 1998

• We need to renormalize this integral with a three-body force

V
(1)
SR (R) = H1(Λ)Λ2δ

„
R − 1

Λ

«
• use H1 to set the shift for state n∗ to 0 by calculating

2M

~2
∆B(1)

n = s2
0 rsξ0

"Z ∞

1
Λ

dRf (0)
n

2
(R)

1

R3
− 2H1M

~2s2
0 rs ξ0

Λ2f (0)
n

2
„

1

Λ

«#

? linear correction is suppressed due to discrete scale invariance of

leading order wave function: ∆B
(1)
n = 0 for all n
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Perturbative Analysis at finite a
Ji, Phillips & LP in preparation

• energy-independent 3-body force H1

• has form H1 = H10 + H11/a

→ no new 3-body input for fixed a

→ new 3-body input in AMO applications

10
-2

10
-1

10
0

10
1

γ

0

20

40

60

80

100

α 
γ4

LO
H11=-20
H11=-10
H11=-15

• recombination at NLO,
renormalized to 3-body datum
in the unitary limit

• reminiscent of quark mass
dependence of counterterms
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Larger Systems
requires alternative many-body approaches

• Stectu,Barret van Kolck
2006

I 4He and 6Li at LO
I ELi6 = 22.6 MeV

EExp = 31.99 MeV
I obtain stable excited

4He state
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→ higher order corrections have to give large corrections
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Halo Nuclei
nucleus reducto!

• describe Halos using the minimal set of degrees of freedom:
core + nucleons

I 6He −→ α+ 2n (three-body problem)
I 8He −→ α+ 4n (five-body problem)

• 2-body: α-n Bertulani, Hammer & van Kolck 2002
α-α Higa, Hammer & van Kolck 2008

• LO EFT seems to be able to describe
Halos well
Canham & Hammer 2008

I Binding energies and Radii calculated
→ 11Li, 14Be, 12Be, 18C, 20C
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Many-Body Systems

The short-range EFT can also be applied to mayn-body systems:

• natural scattering length: dilute Fermi systems −→ energy/particle,
quasiparticle properties, pairing ...
Furnstahl & Hammer 2000, Hammer & LP 2002, Furnstahl, Hammer &

Puglia 2007

• large scattering length: spin 1/2 fermionic systems (neutron matter)
−→ rederive Tan relations
Braaten & LP 2008
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Summary

• The pionless EFT has been applied successfully to a wide range of
observables in atomic, nuclear and particle physics (X3872)

• The pionless EFT is able to describe many well-known scaling
properties in few-body systems
−→ all these are a result of a large scattering length in the
two-body sector

• The pionless EFT gives low-energy theorems for few- and many-body
observables

• A thorough understanding of higher order corrections is relevant for
error estimates and the predictive power of an EFT
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Opportunities

Few-Nucleon Sector

• Ay-Problem in Nuclear Physics

• thermal proton capture p d →He3 γ

• Tritium β-decay (relevant for pp-fusion)

• 4-body physics relevant to big bang nucleosynthesis

Halo Nuclei:

• Helium-6 awaits

• What about higher order corrections

→ insight into core-nucleon interaction!

• From Helium-6 to Helium-8!

α-clusters

• Hoyle state in Carbon-12?
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