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Inclusion of heavy baryon resonances such as the

Roper in EFT is complicated.

Consistent power counting can be established by

using Complex Mass Renormalization scheme – an

extension of the on-mass-shell renormalization scheme

to unstable particles.
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” In principle, the renormalization program is straight-

forward: one calculates quantities of physical in-

terest in terms of the bare parameters at given,

large value of (ultraviolet cutoff) Λ. Once a suffi-

cient number of physical quantities have been de-

termined as functions of the bare parameters one

inverts the result and expresses the bare parame-

ters in terms of physical quantities, always working

at some given, large value of Λ. Finally, one uses

these expressions to eliminate the bare parameters

in all other quantities of physical interest. Renor-

malizability guarantees that this operation at the

same time also eliminates the cutoff.”



Effective Lagrangian:

L = L0 + L(2)
π + LR + LNR + L∆R ,

where

L0 = N̄ (iD/ −mN0)N + R̄(iD/ −mR0)R

−Ψ̄µξ
3
2[(iD/ −m∆0) gµν − i (γµDν + γνDµ)

+i γµD/ γν + m∆0 γµγν]ξ
3
2Ψν.

N , R and Ψν - nucleon, Roper and ∆ with bare

masses mN0, mR0 and m∆0. ξ
3
2 - isospin projector.



The lowest-order Goldstone boson Lagrangian

L(2)
π =

F2

4
Tr

(
∂µU∂µU†

)
+

F2M2

4
Tr

(
U† + U

)
,

where the pions are contained in (2 × 2) matrix

U . F denotes the pion-decay constant in the chiral

limit: Fπ = F [1+O(q2)] = 92.4 MeV; M is the pion

mass at leading order in the quark-mass expansion.

Interaction terms LR, LNR, and L∆R following

B. Borasoy, P. C. Bruns, U.-G. Meißner, and R. Lewis,

Phys. Lett. B 641, 294 (2006):



Leading order pion-Roper coupling

L(1)
R =

gR

2
R̄γµγ5uµR ,

gR is an unknown coupling constant, u =
√

U and

uµ = i
[
u†∂µu− u∂µu†

]
.

Next-to-leading-order Roper Lagrangian

L(2)
R = c∗1,0〈χ+〉 R̄ R + · · · ,

where c∗1,0 is an unknown bare coupling constant

and χ+ = M2(U + U†).

Interaction between the nucleon and the Roper

L(1)
NR =

gNR

2
R̄γµγ5uµN + h.c.

with an unknown coupling constant gNR.



Leading-order interaction between delta and Roper

L(1)
∆R = −g∆R Ψ̄µ ξ

3
2 (gµν + z̃ γµγν)uν R + h.c. ,

g∆R - unknown coupling constant.

Complex-mass renormalization: Split the bare pa-

rameters into renormalized parameters and coun-

terterms and choose the renormalized masses as

the poles of the dressed propagators in the chiral

limit:

mR0 = zχ + δzχ ,

mN0 = m + δm ,

m∆0 = z∆χ + δz∆χ ,

c∗1,0 = c∗1 + δc∗1 ,

· · · .



Power counting:

vertex obtained from an O(qn) Lagrangian ∼ qn,

pion propagator ∼ q−2,

nucleon propagator ∼ q−1,

integration of a loop ∼ q4.

∆ and Roper propagators ∼ q−1.



Dressed propagator of the Roper

iSR(p) =
i

p/ − zχ −ΣR(p/)
,

where ΣR(p/) is the self-energy of the Roper.

Pole of the dressed propagator SR

z − zχ −ΣR(z) = 0 .

Define the pole mass and the width:

z = mR − i
ΓR

2
.



To order O(q3) self-energy consists of tree-contribution

Σtree = 4 c∗1M2 ,

and the loop diagrams:

(a) (b) (c)



Σ(a) =
3g2

NR

128π2F2[Ô1(m)A0

(
m2

)
+ Ô2(m)A0

(
M2

)

+Ô3(m)B0

(
p2, m2, M2

)
],

Σ(b) =
3g2

R

128π2F2[Ô1(zχ)A0

(
z2
χ

)
+ Ô2(zχ)A0

(
M2

)

+Ô3(zχ)B0

(
p2, z2

χ, M2
)
],

Σ(c) =
g2
∆R

48π2F2[Ô4 + Ô5A0

(
z2
∆χ

)
+ Ô6A0

(
M2

)

+Ô7B0

(
p2, z2

∆χ, M2
)
],



where

Ô1(x) = p/

(
1 +

x2

p2

)
+ 2x,

Ô2(x) = p/

(
1− x2

p2

)
,

Ô3(x) = p/


−p2

(
1− x2

p2

)2

+ M2
(
1 +

x2

p2

)
 + 2M2x.

Ô4 =
1

6
[3p/z2

∆χ − 12p2z∆χ − 4p/p2 + 4p2p2 − 3M2

z∆χ

+p/
2(p2)2 − 3M4 − 8p2M2

z2
∆χ

],



Ô5 =
1

p2[p/z2
∆χ + 2p2z∆χ − p/

(
2M2 + p2

)
+ 2p2p2 −M2

z∆χ

+p/

(
M2 − p2

)2

z2
∆χ

],

Ô6 = − 1

p2[p/z2
∆χ + 2p2z∆χ − 2M2p/ − 2p2M2 + p2

z∆χ

+p/
M4 − 3p2M2 − (p2)2

z2
∆χ

],

Ô7 = − 1

p2

[
p/z2

∆χ + 2p2z∆χ + p/
(
p2 −M2

)]

×

z2

∆χ − 2
(
M2 + p2

)
+

(
M2 − p2

)2

z2
∆χ


 .



Loop functions are given as

A0

(
m2

)
= −32π2λ m2 − 2m2 ln

m

µ
,

B0

(
p2, m2

1, m2
2

)
= −32π2λ + 2 ln

µ

m2
− 1− 1

2

(
1 +

m2
2

m2
1(ω − 1)

)

×2F1

(
1,2; 3; 1 +

m2
2

m2
1(ω − 1)

)

−ω

2
2F1 (1,2; 3;ω) ,

ω =
m2

1 −m2
2 + p2 +

√(
m2

1 −m2
2 + p2

)2 − 4m2
1p2

2m2
1

,

2F1 (a, b; c; z) is the hypergeometric function and

λ =
1

16π2

{
1

n− 4
− 1

2

[
ln(4π) + Γ′(1) + 1

]}
.



B0

(
p2, m2

1, m2
2

)
is a single-valued function of ω.

As a function of p2 it is two-valued and has two

branch points p2 = (m1 − m2)
2 and p2 = (m1 +

m2)
2.

Branch points of the self-energy diagrams (b) and

(c) are complex, zχ ±M and z∆χ ±M .

Branch points of the exact two-point functions are

determined by poles of the fully dressed propaga-

tors of the Roper and ∆.



To implement the complex-mass renormalization

scheme, we expand the self-energy loop diagrams

in powers of M , p/ −zχ, and p2−z2
χ, which all count

as O(q). We subtract those terms which violate

the power counting.



Subtraction terms evaluated at p/ = zχ:

ΣST
(a) = −3g2

NR(m + zχ)2

128π2F2zχ
[(m− zχ)

2B0

(
z2
χ,0, m2

)
−A0

(
m2

)
]

+
3g2

NR(m + zχ)M2

64π2F2z3
χ

[
−2m3 ln

(
m

µ

)
− iπm3 + z2

χm

−32π2z3
χλ +

(
m3 − z3

χ

)
ln


z2

χ −m2

µ2


 + iπz3

χ


 ,

ΣST
(b) =

3g2
Rzχ

32π2F2
A0

(
z2
χ

)
− 3g2

RzχM2

32π2F2

[
32π2λ + 2 ln

(
zχ

µ

)
− 1

]
,



ΣST
(c) = − g2

∆R

288F2π2z2
∆χzχ

[
6(z∆χ − zχ)

2(z∆χ + zχ)
4B0

(
z2
χ,0, z2

∆χ

)

+z2
χ(−3z4

∆χ + 12zχz3
∆χ + 4z2

χz2
∆χ − 4z3

χz∆χ − 2z4
χ)

−6
(
z4
∆χ + 2zχz3

∆χ − z2
χz2

∆χ + 2z3
χz∆χ + z4

χ

)
A0

(
z2
∆χ

)]

+
g2
∆RM2

72π2F2z2
∆χz3

χ
[−6iπz6

∆χ − 6(2z∆χ + 3zχ)z
5
∆χ ln

(
z∆χ

µ

)

−9iπzχz5
∆χ + 6z2

χz4
∆χ + 9z3

χz3
∆χ + 3z4

χz2
∆χ − 288π2λz5

χz∆χ

+9iπz5
χz∆χ + z6

χ − 192π2λz6
χ

+
(
6z6

∆χ + 9zχz5
∆χ − 9z5

χz∆χ − 6z6
χ

)
ln


z2

χ − z2
∆χ

µ2




+6iπz6
χ]. (1)



The above expressions are exactly canceled by coun-

terterm contributions generated by δzχ and δc∗1.

The pole of the Roper propagator:

z = zχ − 4 c∗1M2 +
[
Σ(a) + Σ(b) + Σ(c)

]
p/=zχ

−ΣST
(a) −ΣST

(b) −ΣST
(c) .

Loop contribution in z satisfies the power counting,

i.e. is of O(q3).

Non-analytic (in pion mass) terms agree with

B. Borasoy, P. C. Bruns, U.-G. Meißner, and R. Lewis,

Phys. Lett. B 641, 294 (2006):

Our result is a closed expression and need not be

expanded.

It does not diverge in the limit of the nucleon mass

and/or delta mass approaching the Roper mass.



Numerical estimate: F = 0.092 GeV, M = 0.140 GeV,

m = 0.940 GeV, z∆χ = (1.210 − 0.100 i/2) GeV,

zχ = (1.365 − 0.190 i/2) GeV, µ = 1 GeV, gR = 1,

g∆R = 1, gNR = 0.45

z =
[(

1.365− i

2
0.190

)
− 0.0784 c∗1 +

(
0.0175− i

2
0.042

)]
GeV .



Contributions of loop diagrams to the Roper pole

as functions of the pion mass M .
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Summary

• We considered the chiral corrections to the mass

and the width of the Roper resonance in the

framework of the low-energy EFT of QCD.

• Complex-mass renormalization scheme has been

applied.

• Mass and the width of the Roper in the chiral

limit are input parameters in our approach.

• Chiral corrections to the Mass and the width

have been calculated in a systematic way.


