PKU

Di-photon coupling of $f_0(600)$, $f_0(980)$, $f_2(1270)$ resonances and $g^2_{\sigma\pi\pi}$

HAN-QING ZHENG¹

Peking University

Chiral Dynamics 2009, July 6 - 10, 2009, Bern

HAN-QING ZHENG²

Table of contents

- $\blacktriangleright~\gamma\gamma \rightarrow \pi\pi$ data and di-photon coupling of resonances
- The $\sigma\pi\pi$ coupling and the information it provides.

3

• • • • • • • • • • • •

2

PKU

$\gamma\gamma \rightarrow \pi\pi \text{ data}$

T. Mori et al. (Belle Collaboration) 07;

HAN-QING ZHENG⁴

Image: A math a math

PKU

M. R. Pennington, Mod. Phys. Lett. A22(2007)1439.

composition	prediction	author(s)
$(\overline{u}u + \overline{d}d)/\sqrt{2}$	4.0	Babcock and Rosner 76
<u>5</u> 5	0.2	Barnes 85
gg	$0.2 \sim 0.6$	Narison 06
[<i>ns</i>][<i>ns</i>]	0.27	Achasov et al 82
	0.6	Barnes 92
<u></u> κ	0.22	Hanhart 07

Table: Summary of two photon decay width of scalars calculated in different models.

Han-Qing $Zheng^5$

- D. Morgan, M. R. Pennington, Z. Phys. C48(1990)623.
- G. Mennessier, Z. Phys. C16(1983)241.
- A. V. Anisovich, V. V. Anisovich, Phys. Lett. B467(1999)289.
- L. V. Fil'kov, V. L. Kashevarov, Phys. Rev. C72(2005)035211.
- N. N. Achasov, G. N. Shestakov, arXive:0712.0885 [hep-ph].
- J. A. Oller, L. Roca, C. Schat, Phys. Lett. B659(2008)201.
- J. Bernabeu, J. Prades, Phys. Rev. Lett. 100(2008)241804.
- G. Mennessier, S. Narison, W. Ochs, Phys. Lett. **B665**(2008)205.

.

(日) (同) (三) (三)

PKU

A couple channel calculation in IJ=00 channel

Y. Mao et al., arXive::0904.1445 v2, to appear in PRD (Babelon et al. 76; Donoghue, Holstein 93; Morgan, Pennington 91):

$$F(s) = F_B + D(s)[Ps - \frac{s^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{\mathrm{Im}D^{-1}(s')F_B(s')}{s'^2(s' - s - i\epsilon)} ds'] .$$
(1)

2 by 2 matrix D only contains r.h.c. and satisfies couple channel unitarity; iteration method.

$$ImD_{11} = D_{11}\rho_1 T_{11}^*\theta_1 + D_{21}\rho_2 T_{12}^*\theta_2,$$

$$ImD_{21} = D_{11}\rho_1 T_{21}^*\theta_1 + D_{21}\rho_2 T_{22}^*\theta_2;$$
(2)

 F_B Born term amplitudes: $\pi + V + A$ + exponential form-factor. Single channel approx. for other channels \Rightarrow D=Omnés function.

Han-Qing $Zheng^7$

Couple channel T matrix

 K_3 fit of Au, Morgan, Pennington 88; Refit by adding Pislak et al. 03:

Figure 2: The fit curve of $\pi\pi I = 0$ S-wave phase shift and inelasticity with CERN-Munich data [20] and data from Pislak et al. [21].

Han-Qing $\rm Zheng^8$

Figure 3: The phase shift $\phi_{12} = \delta_{\pi} + \delta_K$ of $\pi \pi \to K\bar{K} I = 0$ S-wave scattering with data sets from Res. [22, 23, 24, 25, 26]. Notice that Ref. [22] is not used in the fit.

A (1) > A (1) > A

PKU

Poles from K_3 matrix fit

pole	sheet–II	sheet–III
σ	0.507 - 0.229i	0.638 - 0.165 i
$f_0(980)$	0.994 - 0.019 i	0.984 - 0.033 i

Table: The poles's location on the \sqrt{s} -plane, in units of GeV.

Breit–Wigner description of $f_0(980)$?

"Ambiversion of X(3872)", Ou Zhang et al., arXiv:0901.1553

HAN-QING ZHENG¹⁰

	Pole-positions(GeV)	$\Gamma(f_J o \gamma \gamma) (\text{keV})$
$f_0^{II}(980)$	0.999 — 0.021 <i>i</i>	0.12
$f_0^{III}(980)$	0.977 — 0.060 <i>i</i>	0.35
$f_0(600)$	0.549 – 0.230 <i>i</i>	0.76
$f_2(1270)(\lambda = 0)$	1.272 — 0.087 <i>i</i>	0.66
$f_2(1270)(\lambda = 2)$		3.70

Table: Di-photon decay width of poles

λ = 2 dominates; $Γ_{f_2(1270)→2γ}(4.36 keV) >$ Γ(*Pennington*08)(3.82 ± 0.30) > Γ(*PDG*)(3.03 ± 0.35); f_0'' (980) width agrees with M. R. Pennington, T. Mori, S. Uehara, Y. Watanabe, Eur. Phys. J.C56(2008)1; Γ($f_0(600) → 2γ$) very small.

HAN-QING ZHENG¹¹

Di-photon coupling of $f_0(600)$, $f_0(980)$, $f_2(1270)$ resonances and $g_{\sigma\pi\pi}^2$

• • • • • • • • • • • • •

Figure: The coupled channel fit to the $\gamma\gamma \rightarrow \pi^+\pi^-, \pi^0\pi^0$ data.

Di-photon coupling of $f_0(600)$, $f_0(980)$, $f_2(1270)$ resonances and $g_{\sigma\pi\pi}^2$

2

イロト イヨト イヨト イヨト

A refined fit using single channel amplitude

T matrix from Zhou et al. 05

upto 800 MeV; one parameter fit; others fixed by couple channel fit and treated as background.

HAN-QING ZHENG¹³

χ^2	pole location	$\Gamma(\sigma \rightarrow \gamma \gamma)$ (keV)
0.8	0.456 – 0.276 <i>i</i>	2.08

Table: One parameter fit up to 0.8GeV of data.

- ▶ Non *q̄q* meson.
- Chiral partner of Nambu-Goldstone bosons in a linearly realized chiral symmetry.

▲ 同 ▶ → 三 ▶

イロト イヨト イヨト イヨト

PKU

$$g_{\sigma\pi\pi}^2$$
 couplings

T matrix from Zhou et al., JHEP $0502(2005)043 \Rightarrow$

$$M_{\sigma} = 457 MeV$$
, $\Gamma_{\sigma} = 551 MeV$,

and the residue:

$$g_{\sigma\pi\pi}^2 = (-0.20 - 0.13i) \text{GeV}^2$$
 .

G. Mennessier, S. Narison, W. Ochs, Phys. Lett. B665(2008)205:

$$g_{\sigma\pi\pi}^2 = (-0.25 - 0.06i) \text{GeV}^2$$
 .

 ${
m Re}[g^2] < 0!$

HAN-QING ZHENG¹⁵

★ 圖 ▶ | ★ 画 ▶ |

(문) 문

PKU

The PKU representation

$$S^{phy.} = S^{f_0(600)} \times \prod_i S^{R_i} \cdot S^{cut} .$$

$$S^R(s) = \frac{M^2(z_0) - s + i\rho(s)sG[z_0]}{M^2(z_0) - s - i\rho(s)sG[z_0]} ,$$

$$M^2(z_0) = \operatorname{Re}[z_0] + \frac{\operatorname{Im}[z_0]\operatorname{Im}[z_0\rho(z_0)]}{\operatorname{Re}[z_0\rho(z_0)]} , \quad G[z_0] = \frac{\operatorname{Im}[z_0]}{\operatorname{Re}[z_0\rho(z_0)]} .$$
lainly a kinematical effect?: Neglecting everything rather than

Mainly a kinematical effect?: Neglecting everything rather th $f_0(600)$,

$$g_{\sigma\pi\pi}^2 = (-0.18 - 0.20i) {
m GeV}^2$$
 .

More than a pure kinematical effect!

HAN-QING ZHENG¹⁶

The O(N) model, v1

$$T^{00}(s) = \frac{1}{32\pi} \frac{s - m_{\pi}^2}{f_{\pi}^2 - (s - m_{\pi}^2) \left(\frac{1}{\lambda_0} + \widetilde{B}_0(s)\right)}$$
$$\widetilde{B}_0(p^2) = \frac{-i}{2} \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \frac{1}{q^2 - m_{\pi}^2} \frac{1}{(p+q)^2 - m_{\pi}^2}$$

Renormalization:

$$\frac{1}{\lambda(M)} = \frac{1}{\lambda_0} - \frac{i}{2} \int \frac{d^4 q}{(2\pi)^4} \frac{1}{(q^2 + i\epsilon)(q^2 - M^2 + i\epsilon)}, \quad (3)$$
$$\frac{1}{\lambda(M)} + \tilde{B}(p^2; M) = \frac{1}{\lambda_0} + \tilde{B}_0(p^2) .$$
$$\tilde{B}(s; M) = \frac{1}{32\pi^2} \left[1 + \rho(s) \log \frac{\rho(s) - 1}{\rho(s) + 1} - \log \frac{m_\pi^2}{M^2} \right]$$

HAN-QING ZHENG¹⁷

Chivukula, Golden 92

$$\mu^2 \frac{d\lambda}{d\mu^2} = \frac{\lambda^2(\mu^2)}{32\pi^2} .$$
 (4)

PKU

To define the theory:

$$\frac{1}{\lambda(M)}=0.$$

M denotes the scale where perturbation expansion fails – The theory is still fine! However, Tachyon occurs at m_t^2 . Theory only works when $|s| << |m_t^2|$.

HAN-QING ZHENG¹⁸

PKU

The O(N) model, v2

Sharp momentum cutoff at Λ :

No tachyon. Spurious cut and spurious pole nearby, instead. Cutoff version of effective theory. Set for example

$$rac{1}{\lambda(\Lambda)}=0$$
,

defines (another) theory.

HAN-QING ZHENG¹⁹

Figure: Region on the \sqrt{s} -plane with $\operatorname{Re}[g_{\sigma\pi\pi}^2] < 0$.

Di-photon coupling of $f_0(600)$, $f_0(980)$, $f_2(1270)$ resonances and $g_{\sigma\pi\pi}^2$

・ロン ・回 と ・ ヨン・

3

2

Image: A math a math

PKU

Furthermore, to get the 'real' sigma pole position, $\lambda(M)$ blows up at very low value:

$$\lambda(M\sim .55{
m GeV})=\infty$$
 .

Conclusion: The " σ " pole manifests the extreme 'nonperturbativity' that QCD could offer.

Han-Qing $\rm Zheng^{21}$

• • • • • • • •

.≣...>

-2

PKU

Thanks for patience!

 ${\rm Han}\text{-}{\rm Qing}\ {\rm Zheng}^{22}$